图象相同.
?a1x?b1y?c1ac(2)二元一次方程组?的解可以看作是两个一次函数y=?1x?1和
b1b1?a2x?b2y?c2y=?a2b2x?c2b2的图象交点.
12、函数应用问题 (理论应用 实际应用)
(1)利用图象解题 通过函数图象获取信息,并利用所获取的信息解决简单的实际问题. (2)经营决策问题 函数建模的关键是将实际问题数学化,从而解决最佳方案,最佳策略等问题.建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知题. (四)反比例函数
一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。
取值范围: ① k ≠ 0; ②在一般的情况下 , 自变量 x 的取值范围可以是 不等于0的任意实数 ; ③函数 y 的取值范围也是任意非零实数。 反比例函数的图像属于以原点为对称中心的中心对称的双曲线
反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
反比例函数的性质:
1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。 2.k>0时,函数在x<0和 x>0上同为减函数;k<0时,函数在x<0和x>0上同为增函数。
定义域为x≠0;值域为y≠0。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2,则S1=S2=|K|
5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴
y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那
么A B两点关于原点对称。
7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n2 +4k·m≥(不小于)0。 (k/x=mx+n,即mx^2+nx-k=0) 8.反比例函数y=k/x的渐近线:x轴与y轴。
9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称. (第5点的同义不同表述)
10.反比例上一点m向x、y轴分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|
11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。 12.|k|越大,反比例函数的图象离坐标轴的距离越远。 (五)二次函数
二次函数是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
一般式(已知图像上三点或三对、的值,通常选择一般式.)
y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b^2/4a) ;
顶点式(已知图像的顶点或对称轴,通常选择顶点式.)
y=a(x+m)^2+k(a≠0,a、m、k为常数)或y=a(x-h)^2+k(a≠0,a、h、k为常数),
顶点坐标为(-m,k)或(h,k)对称轴为x=-m或x=h,有时题目会指出让你用配方法把一般式化成顶点式;
交点式(已知图像与轴的交点坐标、,通常选用交点式)
y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;
抛物线的三要素:开口方向、对称轴、顶点 顶点
抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b^2/4a ) ,当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。 开口
二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。
决定对称轴位置的因素
一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。(左同右异)
c的大小决定抛物线当①
时,
,∴抛物线
,与与
轴交点的位置.
与
轴有且只有一个交点(0,):
,与
轴交于负半轴.
,抛物线经过原点; ②轴交于正半轴;③
直线与抛物线的交点 (1)(2)与(,
轴与抛物线轴平行的直线
).
得交点为(0, ). 与抛物线
有且只有一个交点
(3)抛物线与轴的交点 二次函数程
根的判别式判定:
①有两个交点
抛物线与轴相交;
抛物线与轴相切;
的图像与轴的两个交点的横坐标
、
,是对应一元二次方
的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的
②有一个交点(顶点在轴上) ③没有交点
抛物线与轴相离.
(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是个实数根. (5)一次函数
的图像与二次函数
的图像
的交的两
点,由方程组
①方程组有两组不同的解时一个交点;③方程组无解时
的解的数目来确定: 与与
有两个交点; ②方程组只有一组解时没有交点.
与
只有
(6)抛物线与轴两交点之间的距离:若抛物线
,由于
、
是方程
与轴两交点为
的两个根,故
相关推荐: