D、是轴对称图形,故此选项符合题意; 故选:D.
【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.
3.(3分)下列计算正确的是( ) A.a2+a3=a5
C.(﹣2ab)2=﹣4a2b2
B.a8÷a4=a4 D.(a+b)2=a2+b2
【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.
【解答】解:A、a2+a3,无法计算,故此选项错误; B、a8÷a4=a4,故此选项正确; C、(﹣2ab)2=4a2b2,故此选项错误; D、(a+b)2=a2+2ab+b2,故此选项错误; 故选:B.
【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.
4.(3分)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是( )
第11页/共41页
A. B. C. D.
【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.
【解答】解:从左面看可得到从左到右分别是3,1个正方形. 故选:C.
【点评】本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字. 5.(3分)一组数据1,2,1,4的方差为( ) A.1
B.1.5
C.2
D.2.5
【分析】先求得这组数据平均值,再根据方差公式,计算即可 【解答】解: 平均数为=
=2
方差S2=[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]= 故选:B.
【点评】此题主要考查方差的计算公式,熟记方差的计算公式:S2=×[(x1﹣)2+(x2﹣)2+…+(xn﹣1﹣)2+(xn﹣)2]是解题的关键
6.(3分)下列判断正确的是( ) A.
<0.5
B.若ab=0,则a=b=0
第12页/共41页
C.=
D.3a可以表示边长为a的等边三角形的周长
【分析】根据实数的大小比较法则、二次根式的乘除法法则、列代数式的一般步骤判断即可. 【解答】解:A、2<∴<
<3,
<1,本选项错误;
B、若ab=0,则a=0或b=0或a=b=0,本选项错误; C、当a≥0,b>0时,
=
成立,本选项错误;
D、3a可以表示边长为a的等边三角形的周长,本选项正确; 故选:D.
【点评】本题考查的是二次根式的乘除法、实数的大小比较、列代数式,掌握二次根式的乘除法法则、实数的大小比较法则是解题的关键.
7.(3分)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是( ) A.2500(1+x)2=9100 B.2500(1+x%)2=9100
C.2500(1+x)+2500(1+x)2=9100 D.2500+2500(1+x)+2500(1+x)2=9100
【分析】分别表示出5月,6月的营业额进而得出等式即可. 【解答】解:设该公司5、6两月的营业额的月平均增长率为x.根
第13页/共41页
据题意列方程得:
2500+2500(1+x)+2500(1+x)2=9100. 故选:D.
【点评】此题主要考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.
8.(3分)a是不为1的有理数,我们把的差倒数为
=﹣1,﹣1的差倒数
称为a的差倒数,如2=,已知a1=5,a2
是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是( ) A.5
B.﹣
C.
D.
【分析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2019除以3,根据余数的情况确定出与a2019相同的数即可得解. 【解答】解:∵a1=5, a2=a3=a4=…
∴数列以5,﹣,三个数依次不断循环, ∵2019÷3=673, ∴a2019=a3=,
第14页/共41页
===
=﹣,
=, =5,
故选:D.
【点评】本题是对数字变化规律的考查,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.
9.(3分)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是( )
A. B. C. D.
【分析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决. 【解答】解:当0≤t≤2时,S=
=
,即S与t
是二次函数关系,有最小值(0,0),开口向上, 当2<t≤4时,S=
﹣
=
,即S与t是二次函数关系,开口向下,
由上可得,选项C符合题意, 故选:C.
【点评】本题考查动点问题的函数过图象,解答本题的关键是明确题意,利用数形结合的思想解答.
第15页/共41页
相关推荐: