∴2BH?BN?AB?AN?AB?AC,即BH?1?AB?AC?. 2ANHBMC
?BAC与?ABC的平分线相交于点I,【例13】如图所示,圆O是△ABC的外接圆,延长AI交圆O于点D,
连结BD、CD.
(1)求证:BD?CD?DI;
(2)若圆O的半径为10cm,?BAC?120?,求△BDC的面积.
AIBOCD【答案】(1)∵AD平分?BAC,∴?BAD??CAD,
∴BD?CD,∴BD?CD.
∵?DBC??DAC,∴?BAD??DBC, ∵BI平分?ABC,∴?ABI??CBI, ∴?BAD??ABI??DBC??CBI,
∵?BAD??ABI??BID,∴?DBI??BID, ∴BD?DI,∴BD?CD?DI. (2)连结BO、DO
∵?BAC?120?,∴?BAD?60?, ∴?BOD?120?,∴?BCD?60?, ∵BD?CD,∴△BCD是等边三角形 , ∵BO?DO?10cm,∴BD?103cm, ∴S△BCD?3?1034
??2?753cm2.
AIBOCD
1【例14】已知四边形ABCD内接于O,对角线AC?BD,F为线段AB的中点.求证:OF?CD.
2
秋季同步课·圆·圆的内接三角形和四边形·学案·教师版 Page 9 of 17
DAOFCB【答案】证法一:如图,设四边形ABCD内接于圆O,且AC?BD,OF为AB之弦心距.
作CD的弦心距OE,连接OB、OC. 1显然?OCE?90???EOC?90??DC的度数.
2∵AC?BD,
∴AB?DC?180?, 1∴?OCE?AB.
2m1?BOF?AB, 又
2∴?OCE??BOF.
m∵OC?BO,
∴Rt△OCE≌Rt△BOF. ∴CE?OF,即OF?1DC. 2DAOFBCE
证法二:如图,作直径AE,连接BE、CE. ∵O、F为中点,∴BE?2OF. ∵CE?AC,BD?AC,∴CE∥BD, ∴BE?DC,∴BE?DC. 即2OF?DC,∴OF?1DC. 2DEAOFBC
证法三:如图,设AC、BD交于P,E为DC之中点.连接EP延长垂直AB于G. 连接FP延长必垂直DC于H.连接OE. ∵OE?DC,FH?DC,∴FH∥OE,
同理EG∥OF.∴PFOE为平行四边形,∴OF?EP.
秋季同步课·圆·圆的内接三角形和四边形·学案·教师版 Page 10 of 17
1DC(∵EP是Rt△CDP斜边上的中线), 21∴OF?DC.
2而EP?D
H
E
C
AGF
B
O
CD?3,如图,AB?CD?BC?AD,则【例15】已知圆内接四边形ABCD中AB?11,BC?9,AD?__________.
DC3911AB【答案】连接AC,BD,
由AB?CD?BC?AD, 知AB?CD?180?,AC?BD,
因而AD2?BC2?AB2?CD2,AD2?112?32?92?49,AD?7.
【例16】已知:如图,正方形ABCD中,AC,BD为对角线,将?BAC绕顶点A逆时针旋转?°
(0???45),旋转后角的两边分别交BD于点P、点Q,交BC,CD于点E、点F,联结EQ.在
?BAC的旋转过程中,?AEQ的大小是否改变,若不变写出它的度数,若改变,写出它的变化范
围(不必证明);
ADQPBEFC【答案】不变.?EAF??CBD?45?, A、B、E、Q四点共圆
(选讲)
【例17】已知:如图,⊙O的内接△ABC中,?BAC?45?,?ABC?15?,AD∥OC并交BC的延长线于D,
OC交AB于E.
(1)求?D的度数;
秋季同步课·圆·圆的内接三角形和四边形·学案·教师版 Page 11 of 17
(2)求证:AC2?AD?CE; (3)求
BC的值. CD(西城初三上期末)
OBECAD【答案】(1)连结OB,
∵⊙O的内接△ABC中,?BAC?45?, ∴?BOC?2?BAC?90?,
∵OB?OC,∴?OBC??OCB?45?, ∵AD∥OC,∴?D??OCB?45?.
FOEBCAD
?D?45?,∴?BAC??D, (2)∵?BAC?45?,
∵AD∥OC,∴?ACE??DAC, ∴△ACE∽△DAC,∴∴AC2?AD?CE.
(3)解法一:延长BO交DA延长线于F,连结OA. ∵AD∥OC,∴?F??BOC?90?,
∵?ABC?15?,∴?OBA??OBC??ABC?30?.
?OAF?30?, ∵OA?OB,∴?FOA??OBA??OAB?60?,ACCE?, DAAC1∴OF?OA,
2∵AD∥OC,∴△BOC∽△BFD,∴∴
BCBO?, BDBFBCBOOABC???2,即的值为2. CDOFOFCDOEBMCAD解法二:作OM?BA于M,设⊙O的半径为r, 易得?OBM?30?,BM?
3rr,OM?,且?MOE?30?, 22Page 12 of 17
秋季同步课·圆·圆的内接三角形和四边形·学案·教师版
相关推荐: