高中数学主要知识点
必修1数学知识 §1.1.1、集合
第一章、集合与函数概念
1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。 2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:N*或N?,整数集合:Z,有理数集合:Q,实数集合:R. 4、集合的表示方法:列举法、描述法.
§1.1.2、集合间的基本关系
1、 一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的
子集。记作A?B.
2、 如果集合A?B,但存在元素x?B,且x?A,则称集合A是集合B的真子集.记作:AB. 3、 把不含任何元素的集合叫做空集.记作:?.并规定:空集合是任何集合的子集. 4、 如果集合A中含有n个元素,则集合A有2个子集. §1.1.3、集合间的基本运算
1、 一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:A?B. 2、 一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:A?B. 3、全集、补集?CUA?{x|x?U,且x?U}
运算类型 交 集 并 集 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A?B(读作‘A并B’),即A?B ={x|x?A,或x?B}). 补 集 设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作CSA,即 CSA={x|x?S,且x?A} S n定 由所有属于A且属义 于B的元素所组成的集合,叫做A,B的交集.记作A?B(读作‘A交B’),即A?B={x|x?A,且x?B}. 韦 恩 图 示 ABABA 图1 图2A?A=A 性 A?Φ=Φ A?B=B?A A?B?A 质 A?B?B A?A=A A?Φ=A A?B=B?A A?B?A A?B?B (CuA) ? (CuB) = Cu (A?B) (CuA) ? (CuB) = Cu(A?B) A? (CuA)=U A? (CuA)= Φ.
§1.2.1、函数的概念
1、 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都
y?f?x?,x?A. 有惟一确定的数f?x?和它对应,那么就称f:A?B为集合A到集合B的一个函数,记作:
2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,
则称这两个函数相等. §1.2.2、函数的表示法
1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值
单调性的定义:见书P28
1、 注意函数单调性证明的一般格式:
解:设x1,x2??a,b?且x1?x2,则:f?x1??f?x2?=… §1.3.2、奇偶性
1、 一般地,如果对于函数f?x?的定义域内任意一个x,都有f??x??f?x?,那么就称函数f?x?为偶函数.
偶函数图象关于y轴对称.
2、 一般地,如果对于函数f?x?的定义域内任意一个x,都有f??x???f?x?,那么就称函数f?x?为奇函数.
奇函数图象关于原点对称.
第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算
1、 一般地,如果x?a,那么x叫做a 的n次方根。其中n?1,n?N?.
n2、 当n为奇数时,na?a; 当n为偶数时,a?a.
nnn3、 我们规定: ⑴anm?mana?0,m,n?N*,m?1; ⑵a?n???1?n?0?; an4、 运算性质: ⑴aa?arsr?s?a?0,r,s?Q?; ⑵?ar?s?ars?a?0,r,s?Q?; ⑶?ab??arbr?a?0,b?0,r?Q?.
r§2.1.2、指数函数及其性质 1、 记住图象:y?a?a?0,a?1?
x
相关性质:
§2.2.1、对数与对数运算
x1、a?N?logaN?x; 2、alogaN?a. 3、loga1?0,logaa?1.
4、当a?0,a?1,M?0,N?0时:
⑴loga?MN??logaM?logaN; ⑵loga??M?N?n??logaM?logaN; ⑶logaM?nlogaM. ?5、换底公式:logab?logcb1 ?a?0,a?1,c?0,c?1,b?0?. 6、logab?logbalogca ?a?0,a?1,b?0,b?1?. §2..2.2、对数函数及其性质
1、 记住图象:y?logax?a?0,a?1?
相关性质:
§2.3、幂函数
1、几种幂函数的图象:
基本初等函数的图像和基本性质
表1 指数函数y?ax?a?0,a?1? 对数数函数y?logax?a?0,a?1? 定义域 值域 x?R x??0,??? y?R y??0,??? 图象 过定点(0,1)?? 减函数 增函数 减函数 过定点(1,0) 增函数 x?(??,0)时,y?(1,??x)?(??,0)时,y?(0,1)x?(0,1)时,y?(0,??)x?(0,1)时,y?(??,0))?(1,??)时,y?(??,0)x?(1,??)时,y?(0,??)x?(0,??)时,y?(0,1)x?(0,??)时,y?(1,??x性 质 a?b 表2 a?b ?a?b a?b 幂函数y?x(??R) ??p q??0 0???1 ??1 ??1 p为奇数q为奇数 奇函数 p为奇数q为偶数 p为偶数q为奇数 第一象限性质 减函数 增函数 过定点 (01,) 偶函数
相关推荐: