第一范文网 - 专业文章范例文档资料分享平台

广东省广州市海珠区2017-2018学年八年级下学期期末考试数学试题(解析版)

来源:用户分享 时间:2025/5/18 8:48:43 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∵点P从点C出发以2个单位/秒沿x轴向左运动, ∴CP=2t, ∴OP=6﹣2t,

由(1)知,直线AC的解析式为y=﹣x+3, ∴E(6﹣2t,t), ∴PE=t, ∴PE=FQ,

∵FQ⊥x轴,PE⊥x轴, ∴∠PQF=90°,FQ∥PE, ∵PE=FQ,

∴四边形PEFQ是平行四边形, ∵∠PQF=90°,

∴平行四边形PEFQ是矩形;

(3)由(2)知,PC=2t,OQ=t,PE=t,

∴PQ=OC﹣OQ﹣CP=6﹣t﹣2t=6﹣3t,或PQ=OQ+CP﹣OC=3t﹣6, ∵四边形PEFQ是正方形, ∴PQ=PE,

∴6﹣3t=t或3t﹣6=t,

∴t=或t=3,即:点P运动秒或3秒时,四边形EPQF是正方形.

25.(14分)如图,正方形ABCD的边长是2,点E是射线AB上一动点(点E与点A、B不重合),过点E作FG⊥DE交射线CB于点F、交DA的延长线于点G. (1)求证:DE=GF.

(2)连结DF,设AE=x,△DFG的面积为y,求y与x之间的函数解析式. (3)当Rt△AEG有一个角为30°时,求线段AE的长.

【考点】LO:四边形综合题.

【分析】(1)过点F作FH⊥DA,垂足为H,只要证明,△FHG≌△DAE即可解决问题; (2)由(1)可知DE=FG,所以△DGF的底与高可以关键勾股定理用含x的式子表示出来,所以解析式就可以表示出来; (3)分两种切线画出图形分别解决即可; 【解答】(1)证明:过点F作FH⊥DA,垂足为H,

∵在正方形ABCD中,∠DAE=∠B=90°, ∴四边形ABFH是矩形, ∴FH=AB=DA, ∵DE⊥FG,

∴∠G=90°﹣∠ADE=∠DEA, 又∴∠DAE=∠FHG=90°, ∴△FHG≌△DAE, ∴DE=GF.

(2)∵△FHG≌△DAE ∴FG=DE=

∵S△DGF=FG?DE, ∴y=

∴解析式为:y=

(0<x<2).

(3)①当∠AEG=30°时,

在Rt△ADE中,∵∠DAE=90°,AD=2,∠AED=90°﹣30°=60°, ∴AE=AD?tan30°=,

②当∠AEG=60°时,

在Rt△ADE中,∵∠DAE=90°,AD=2,∠AED=90°﹣60°=30°,∴AE=AD?tan60°=2

综上所述,满足条件的AE的值为2或

广东省广州市海珠区2017-2018学年八年级下学期期末考试数学试题(解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c51p3o2v7463sk4u09qt56trx01723y00eym_9.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top