.............
∴an?a1?(a2?a1)?(a3?a2)?…?(an?an?1)?1?3?2?3?2?…?3?201n?2
?1?3(2?2?…?2∵当n?1时,3?21?101n?21?(1?2n?1))?1?3??3?2n?1?2(n?2),
1?2?2?1式子也成立,
n?1∴数列?an?的通项公式an?3?2(2)解:∵bn?nan?3n?2n?1?2.
?2n,即:
b1?3?1?20?2,b2?3?2?21?4,b3?3?3?22?6,…
∴Sn?b1?b2?b3?…?bn?3(1?2?2?2?3?2?…?n?2设Tn?1?2?2?2?3?2?…?n?222012n?1012n?1)?(2?4?6?…?2n).
,①
n?1则2Tn? 1?2?2?2?…?(n?1)?2①②,得?Tn?(2?2?2?…?2∴Tn?(n?1)?2?1,
n012n?1?n?2n,②
)?n?2n?(2n?1)?n?2n,
∴Sn?3(n?1)?2?3?2(1?2?3?…?n)?3(n?1)?2?n(n?1)?3. 19.解:(1)由椭圆E经过点A(2,3),离心率e?nn1, 2?49??1,2???a?16,?a2b2可得?2 解得?2 2??b?12,?a?b?1,?4?a2x2y2??1. ∴椭圆E的方程为
1612(2)由(1)可知F1(?2,0),F2(2,0), 则直线AF1的方程为y?3(x?2),即3x?4y?6?0, 4.............
.............
直线AF2的方程为x?2,
由点A在椭圆E上的位置易知直线l的斜率为正数. 设P(x,y)为直线l上任意一点,
则|3x?4y?6|3?(?4)22. ?|x?2|,解得2x?y?1?0或x?2y?8?0(斜率为负数,舍去)
∴直线l的方程为2x?y?1?0.
设过C点且平行于l的直线为2x?y?m?0,
?x2y2?1,??22由?1612整理得19x?16mx?4(m?12)?0, ?2x?y?m?0,?由??(16m)?4?19?4(m?12)?0,解得m?76, 因为m为直线2x?y?m?0在y轴上的截距, 依题意,m?0,故m?219. 222∴C点的坐标为(?16191619,). 191913x?2x2?3x,f'(x)??x2?4x?3, 320.解:(1)∵当a??1时,f(x)??∴f(?2)?82?8?6?,f'(?2)??4?8?3?1. 332,即所求切线方程为3x?3y?8?0. 322∴y??x?(?2)??(2)∵f'(x)??x?4ax?3a??(x?a)(x?3a).
当a?0时,由f'(x)?0,得a?x?3a;由f'(x)?0,得x?a或x?3a. ∴函数y?f(x)的单调递增区间为(a,3a),单调递减区间为(??,a)和(3a,??),
.............
.............
∵f(3a)?0,f(a)??43a, 343
a. 3
∴当a?0时,函数y?f(x)的极大值为0,极小值为?(3)f'(x)??x?4ax?3a??(x?2a)?a, ∵f'(x)在区间?2a,2a?2?上单调递减,
2222∴当x?2a时,f'(x)max?a,当x?2a?2时,f'(x)min?a?4. ∵不等式|f'(x)|?3a恒成立,
22?a?0,?2∴?a?3a,解得1?a?3, ?a2?4??3a,?故a的取值范围是?1,3?.
欢迎访问“高中试卷网”——http://sj.fjjy.org .............
相关推荐: