第一范文网 - 专业文章范例文档资料分享平台

人教版小学六年级数学下册总复习知识点

来源:用户分享 时间:2025/9/14 13:50:44 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

再把数代入式子求值。字母表示的是数,后面不写单位名称。

(2)同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。 二、简易方程

1、方程:含有未知数的等式叫做方程。

(1)方程是等式,又含有未知数,两者缺一不可。

(2)方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立 。

2、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。 三、解方程:

求方程的解的过程叫做解方程。 四、列方程解应用题

1、列方程解应用题的意义:用方程式去解答应用题求得应用题的未知量的方法。 2、列方程解答应用题的步骤:

(1)弄清题意,确定未知数并用x表示; (2)找出题中的数量之间的相等关系; (3)列方程,解方程;

(4)检查或验算,写出答案。 3、列方程解应用题的方法

(1)综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。

(2)分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。 4、列方程解应用题的范围

小学范围内常用方程解的应用题: A、一般应用题; B、和倍、差倍问题;

C、几何形体的周长、面积、体积计算; D、 分数、百分数应用题; E、比和比例应用题。 五、比和比例

1、比的意义和性质

(1)比的意义: 两个数相除又叫做两个数的比。 “:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。 比值通常用分数表示,也可以用小数表示,有时也可能是整数。 比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。 (2)比的性质: 比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3)求比值和化简比

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比, 即前、后项是互质的数。 (4)比例尺:

图上距离:实际距离=比例尺

要求会求比例尺:已知图上距离和比例尺求实际距离; 已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。 (5)按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。 2、比例的意义和性质 (1)比例的意义

表示两个比相等的式子叫做比例。 组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。 (2)比例的性质

在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。

(3)解比例: 根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例的另外一个未知项。求比例中的未知项,叫做解比例。 3、正比例和反比例

(1)成正比例的量: 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示: y/x=k(一定)

(2)成反比例的量: 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。 用字母表示: x×y=k(一定)

第四章 空间与图形 一、线和角 1、线

(1)直线:直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。 (2)射线:射线只有一个端点;长度无限。

(3)线段:线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。 (4)平行线:在同一平面内,不相交的两条直线叫做平行线。 两条平行线之间的垂线长度都相等。

(5)垂线:两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。 2、角

(1)从一点引出两条射线,所组成的图形叫做角。 这个点叫做角的顶点,这两条射线叫做角的边。

(2)角的分类

锐角:小于90°的角叫做锐角。 直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:角的两边成一条直线,这时所组成的角叫做平角。平角是180°。 周角:角的一边旋转一周,与另一边重合。周角是360°。 二、平面图形 1、长方形

(1)特征:对边相等,4个角都是直角的四边形。有两条对称轴。 (2)计算公式: c=2(a+b) ; s=ab 2、正方形

(1)特征:四条边都相等,四个角都是直角的四边形。有4条对称轴。 (2)计算公式: c=4a ; s=a2 3、三角形

(1)特征:由三条线段围成的图形。内角和是180度。三角形具有稳定性。三角形有三条高。

(2)计算公式: s=ah/2 (3) 分类 a.按角分:

锐角三角形 :三个角都是锐角。

直角三角形 :有一个角是直角。等腰三角形的两个锐角各为45度,它有一条对称轴。 钝角三角形:有一个角是钝角。 b.按边分:

不等边三角形:三条边长度不相等。

等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。

等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。 4、平行四边形

(1)特征:两组对边分别平行的四边形。 相对的边平行且相等。

对角相等,相邻的两个角的度数之和为180度。 平行四边形容易变形。 (2)计算公式: s=ah 5、梯形

(1)特征:只有一组对边平行的四边形。 中位线等于上下底和的一半。 等腰梯形有一条对称轴。 (2) 公式:s=(a+b)h/2 6、圆

(1)圆的认识

①平面上的一种曲线图形。

②圆心:圆中心的一点叫做圆心。一般用字母o表示。

③半径:连接圆心和圆上任意一点的线段叫做半径。一般用r表示。 在同一个圆里,有无数条半径,每条半径的长度都相等。

④直径:通过圆心并且两端都在圆上的线段叫做直径。一般用d表示。

同一个圆里有无数条直径,所有的直径都相等。

⑤同一个圆里,直径等于两个半径的长度,即d=2r。 ⑥圆的大小由半径决定; ⑦圆的位置由圆心决定。 ⑧圆有无数条对称轴。

(2)圆的画法:把圆规的两脚分开,定好两脚间的距离(即半径); 把有针尖的一只脚固定在一点(即圆心)上; 把装有铅笔尖的一只脚旋转一周,就画出一个圆。 (3)圆的周长:围成圆的曲线的长叫做圆的周长。 把圆的周长和直径的比值叫做圆周率。用字母π表示。 (计算时π=)

(4)圆的面积:圆所占平面的大小叫做圆的面积。

(5)计算公式: d=2r ; r=d/2 ; c=πd ; c=2πr ; s=πr2 7、扇形

(1)扇形的认识:

①一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。 ②圆上AB两点之间的部分叫做弧,读作“弧AB”。 ③顶点在圆心的角叫做圆心角。

④在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。 ⑤扇形有一条对称轴。 8、环形

(1)特征:由两个半径不相等的同心圆相减而成,有无数条对称轴。 (2)计算公式:s=π(R2-r2) 9、轴对称图形

(1)特征:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

折痕所在的这条直线叫做对称轴。 等腰梯形有1条对称轴, 扇形有1条对称轴。 长方形有2条对称轴。 等腰三角形有2条对称轴, 等边三角形有3条对称轴。 正方形有4条对称轴, 菱形有4条对称轴, 圆有无数条对称轴。 三、立体图形 (一)长方体

1、特征:六个面都是长方形(有时有两个相对的面是正方形)。 相对的面面积相等,12条棱相对的4条棱长度相等。 有8个顶点。

相交于一个顶点的三条棱的长度分别叫做长、宽、高。 两个面相交的边叫做棱。 三条棱相交的点叫做顶点。

把长方体放在桌面上,最多只能看到三个面。

人教版小学六年级数学下册总复习知识点.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c53fu82j3wo85bn78arf2570pk9t7uz00b29_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top