Ⅱ卷(理科附加)
21.【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答. ...................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-1:几何证明选讲]
在△ABC中,已知CM是∠ACB的平分线,△AMC的外接圆交BC于点N,且BN?2AM. 求证:AB?2AC.
B.[选修4-2:矩阵与变换]
B N 21—A题) (第M A O C ? 0?30?-1??. ?已知矩阵A=,A的逆矩阵A=3?2a???
? b 1?
(1)求a,b的值; (2)求A的特征值.
C.[选修4-4:坐标系与参数方程]
??x=3+cosθ,
在平面直角坐标系xOy中,已知圆C的参数方程为?(θ为参数),以原点O为
?y=sinθ?
1极点,以x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为?sin??P是圆C上的动点,求点P到直线l的距离的最小值.
D.[选修4-5:不等式选讲]
111已知a,b,c均为正数,证明:a?b?c???≥63.
abc2223.若点 ??π?62??2
【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出 .......
文字说明、证明过程或演算步骤.
22.如图,已知直三棱柱ABC?A1B1C1中,AB?AC,AB?3,AC?4,B1C?AC1.
(1)求AA1的长.
(2)若BP=1,求二面角P?AC?A的余弦值. 1
23.某书店有不同类型的数学杂志n种,数学教师张老师购买每种类型杂志的概率都是
1,且任何 2B1
A1
C1
P B
A C
(第22题图)
两种不同类型杂志其是否购买相互独立,设X表示张老师购买的杂志种类数与没有购买的杂志 种类数的差的绝对值.
(1)当n=3时,求X的概率分布及数学期望;
(2)当n=2k+1,k?N*时,求X的概率分布及数学期望.
相关推荐: