第一范文网 - 专业文章范例文档资料分享平台

江苏省徐州市2019年中考数学总复习第二单元方程(组)与不等式(组)单元测试

来源:用户分享 时间:2025/5/31 2:31:47 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

故答案为20%.

11.5 [解析] 根据二元一次方程组的定义,将代入得解得所以a+b=5.

12. [解析] ∵2n(n≠0)是关于x的方程x-2mx+2n=0的根,

2

∴(2n)-2m×2n+2n=0,原方程整理得4n-4mn+2n=0,∴2n(2n-2m+1)=0,∵n≠0,∴2n-2m+1=0,即2n-2m=-1,∴m-n=.

22

13.1或 [解析] 去分母,得x-3a=2a(x-3),

整理,得(1-2a)x=-3a.

当1-2a=0时,方程无解,a=;

当1-2a≠0时,x==3时,分式方程无解,a=1.

故a为1或.

14.k≥-4 [解析] ∵关于x的一元二次方程x+4x-k=0有实数根,∴Δ=b-4ac=4-4×1×(-k)≥0,解得k≥-4.

222

15.-= [解析] 根据题意可得甲车的速度为(x+15)千米/时,根据甲车比乙车早半小时到达目的地,可列出方

程-=.

16.1 -2 [解析] 由题意知(1,2) ? (p,q)=(p-2q,q+2p),

所以有 解得

17.解:(1)原方程可化为(x-1)(x+3)=0,

解得x1=1,x2=-3.

(2)去分母,得3x+x+2=4,

解得x=.

经检验,x=是原方程的解.

(3)

由不等式①得x<5,

由不等式②得x≥-1.

所以,原不等式组的解集为-1≤x<5.

解集在数轴上表示为

18.解:设这本名著共有x页.

根据题意,得

36+(x-36)=x.

解得x=216.

答:这本名著共有216页.

19.解:设原来每天加工x顶帐篷,

根据题意得

=++4,

解得x=100.

经检验,x=100是原方程的解,且符合题意.

答:该厂原来每天加工100顶帐篷.

20.解:(1)∵Δ=m-4(m-2)=(m-2)+4>0,

22

∴无论m取任何实数,此方程总有两个不相等的实数根.

(2)∵x1+x2=-m,x1x2=m-2,

∴y=+2

+4x1x2=(x1+x2)2+2x1x2=(-m)2+2(m-2)=m2+2m-4.

2

(3)∵y=m+2m-4=(m+1)-5,

∴顶点为(-1,-5).

又∵-1≤m≤2,∴当m=-1时,y最小值=-5;

当m=2时,y最大值=4.∴-5≤y≤4.

21.解:(1)设老师有x人,学生有y人,依题意得

解得

答:参加此次研学旅行活动的老师有16人,学生有284人.

(2)由(1)得出老师有16人,要保证每辆客车上至少要有2名老师,则租用客车总数最多为8辆.

要保证所有师生都有车坐,假设都坐乙种客车,≈7.1,即最少需8辆.

综合得租用客车总数为8辆.

(3)设乙种客车租m辆,则甲种客车租(8-m)辆.

∵租车总费用不超过3100元,

∴400m+300(8-m)≤3100,解得m≤7.

为使300名师生都有车坐,

则42m+30(8-m)≥300,解得m≥5.

∴5≤m≤7(m为整数).∴共有3种租车方案:

方案一:租用甲种客车3辆,乙种客车5辆,租车费用是2900元;

方案二:租用甲种客车2辆,乙种客车6辆,租车费用是3000元;

方案三:租用甲种客车1辆,乙种客车7辆,租车费用是3100元.

∴最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.

江苏省徐州市2019年中考数学总复习第二单元方程(组)与不等式(组)单元测试.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c55c2s7mjni5nrap1rg1l036aw5tvxo00xoq_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top