全国初中数学竞赛辅导(八年级)教学案全集
第三十二讲 自测题
自测题一
1.分解因式:x4-x3+6x2-x+15.
2.已知a,b,c为三角形的三边长,且满足
a2+b2+c2+338=10a+24b+26c,
试确定这个三角形的形状. 3.已知a,b,c,d均为自然数,且
a5=b4,c3=d2,c-a=19,
求d-b的值.
4. a,b,c是整数,a≠0,且方程ax2+bx+c=0的两个根为a和b,求a+b+c的值.
5.设E,F分别为AC,AB的中点,D为BC上的任一点, P在BF上,DP∥CF,Q在CE上,DQ∥BE,PQ交BE于R,交
6.四边形ABCD中,如果一组对角(∠A,∠C)相等时, 另一组对角(∠B,∠D)的平分线存在什么关系?
7.如图2-194所示.△ABC中,D,E分别是边BC,AB上的点,且∠1=∠2=∠3.如果△ABC,△
8.如图2-195所示.△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连AN,CM交于P点.求∠APM的度数. 9.某服装市场,每件衬衫零售价为70元,为了促销,采用以下几种优惠方式:购买2件130元;购满5件者,每件以零售价的九折出售;购买7件者送1件.某人要买6件,问有几种购物方案(必要时,可与另一购买2件者搭帮,但要兼顾双方的利益)?哪种方案花钱最少?
自测题二
1.分解因式:(x2+3x+5)2+2x3+3x2+1Ox. 2.对于集合
p={x丨x是1到100的整数}
中的元素a,b,如果a除以b的余数用符号表示.例如17除以4,商是4,余数是1,就表示成<17,4>=1,3除以7,商是0,余数是3,即表示成<3,7>=3.试回答下列问题:
(1)本集合{x丨<78,x>=6,x∈p}中元素的个数; (2)用列举法表示集合
{x丨
3.已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值.
4.已知方程x2-3x+a+4=0有两个整数根. (1)求证:这两个整数根一个是奇数,一个是偶数;
(2)求证:a是负偶数;
(3)当方程的两整数根同号时,求a的值及这两个根. 5.证明:形如8n+7的数不可能是三个整数的平方和.
7.如图2-196所示.AD是等腰三角形ABC底边上的中线,BE是角平分线,EF⊥BC,EG⊥BE且交BC于G.求证:
8.如图2-197所示.AD是锐角△ABC的高,O是AD上任意一点,连BO,OC并分别延长交AC,AB于E,F,连结DE,DF.求证:∠EDO=∠FDO.
9.甲校需要课外图书200本,乙校需要课外图书240本,某书店门市部A可供应150本,门市部B可供应290本.如果平均每本书的运费如下表,考虑到学校的利益,如何安排调运,才能使学校支出的运费最少?
相关推荐: