18.(2016¡¤ËÄ´¨¡¤ÎÄT 18)ÔÚ¡÷ABCÖÐ,½ÇA,B,CËù¶ÔµÄ±ß·Ö±ðÊÇa,b,c,ÇÒ(1)Ö¤Ã÷:sin Asin B=sin C; (2)Èôb+c-a=bc,Çótan B. ¡¾½âÎö¡¿(1)Ö¤Ã÷¸ù¾ÝÕýÏÒ¶¨Àí,¿ÉÉèÔòa=ksin A,b=ksin B,c=ksin C. ´úÈë
cosAcosB
+ba
asinA2
2
2
cosAcosB
+ba=c.
sinC
65=sinB=sinC=k(k>0).
bc
=cÖÐ,ÓÐksinA+ksinB=ksinC,
sinCcosAcosBsinC
±äÐοɵÃsin Asin B=sin Acos B+cos Asin B=sin(A+B).
ÔÚ¡÷ABCÖÐ,ÓÉA+B+C=¦Ð,ÓÐsin(A+B)=sin(¦Ð-C)=sin C,ËùÒÔsin Asin B=sin C. (2)½âÓÉÒÑÖª,b+c-a=bc, 222
¸ù¾ÝÓàÏÒ¶¨Àí,ÓÐcos A=b+c-a=3.
2bc52
2
2
65
ËùÒÔsin A=¡Ì1-cos2A=. ÓÉ(1),sin Asin B=sin Acos B+cos Asin B, ËùÒÔsin B=cos B+sin B, ¹Êtan B=
sinB
=4. cosB4545354519.(2016¡¤Õ㽡¤ÎÄT 16)ÔÚ¡÷ABCÖÐ,ÄÚ½ÇA,B,CËù¶ÔµÄ±ß·Ö±ðΪa,b,c.ÒÑÖªb+c=2acos B. (1)Ö¤Ã÷:A=2B;
(2)Èôcos B=,Çócos CµÄÖµ.
¡¾½âÎö¡¿(1)Ö¤Ã÷ÓÉÕýÏÒ¶¨ÀíµÃsin B+sin C=2sin Acos B,
¹Ê2sin Acos B=sin B+sin(A+B)=sin B+sin A¡¤cos B+cos Asin B,ÓÚÊÇsin B=sin(A-B). ÓÖA,B¡Ê(0,¦Ð),¹Ê0 Òò´ËA=¦Ð(ÉáÈ¥)»òA=2B,ËùÒÔ,A=2B. (2)½âÓÉcos B=µÃsin B=¡Ì5,cos 2B=2cos2B-1=-,¹Êcos A=-,sin A=4¡Ì5, 3923191923 cos C=-cos(A+B)=-cos Acos B+sin Asin B=. 20.(2016¡¤È«¹ú1¡¤ÀíT17)¡÷ABCµÄÄÚ½ÇA,B,CµÄ¶Ô±ß·Ö±ðΪa,b,c,ÒÑÖª2cos C(acos B+bcos A)=c. (1)ÇóC; 2227(2)Èôc=¡Ì7,¡÷ABCµÄÃæ»ýΪ 3¡Ì3,Çó¡÷ABC2µÄÖܳ¤. ¡¾½âÎö¡¿(1)ÓÉÒÑÖª¼°ÕýÏÒ¶¨Àí,µÃ 2cos C(sin Acos B+sin Bcos A)=sin C, ¼´2cos Csin(A+B)=sin C. ¹Ê2sin Ccos C=sin C. ¿ÉµÃcos C=,ËùÒÔC=3. (2)ÓÉÒÑÖª,absin C=3¡Ì3.ÓÖC=3,ËùÒÔab=6. 212¦Ð 12¦Ð ÓÉÒÑÖª¼°ÓàÏÒ¶¨Àí,µÃa+b-2abcos C=7. ¹Êa2+b2=13,´Ó¶ø(a+b)2=25. ËùÒÔ¡÷ABCµÄÖܳ¤Îª5+¡Ì7. 21.(2016¡¤Õ㽡¤ÀíT16)ÔÚ¡÷ABCÖÐ,ÄÚ½ÇA,B,CËù¶ÔµÄ±ß·Ö±ðΪa,b,c,ÒÑÖªb+c=2acos B. (1)Ö¤Ã÷:A=2B; (2)Èô¡÷ABCµÄÃæ»ýS=a,Çó½ÇAµÄ´óС. 4 2 22 ¡¾½âÎö¡¿(1)Ö¤Ã÷ÓÉÕýÏÒ¶¨ÀíµÃsin B+sin C=2sin Acos B, ¹Ê2sin Acos B=sin B+sin(A+B) =sin B+sin Acos B+cos Asin B. ÓÚÊÇsin B=sin(A-B). ÓÖA,B¡Ê(0,¦Ð),¹Ê0 Òò´ËA=¦Ð(ÉáÈ¥)»òA=2B,ËùÒÔ,A=2B. (2)½âÓÉS=µÃabsin C=, 424¹ÊÓÐsin Bsin C=sin 2B=sin Bcos B. Òòsin B¡Ù0,µÃsin C=cos B. ÓÖB,C¡Ê(0,¦Ð),ËùÒÔC=2¡ÀB. µ±B+C=2ʱ,A=2; µ±C-B=2ʱ,A=4. ¦Ð ¦Ð ¦Ð ¦Ð ¦Ð 1 2 a2 1 a2 ×ÛÉÏ,A=2»òA=4. 22.(2015¡¤È«¹ú2¡¤ÀíT17)¡÷ABCÖÐ,DÊÇBCÉϵĵã,ADƽ·Ö¡ÏBAC,¡÷ABDÃæ»ýÊÇ¡÷ADCÃæ»ýµÄ2±¶. (1)Çó sinB ; sinC¦Ð¦Ð (2)ÈôAD=1,DC=¡Ì2,ÇóBDºÍACµÄ³¤. 2¡¾½âÎö¡¿(1)S¡÷ABD=AB¡¤ADsin¡ÏBAD, S¡÷ADC=AC¡¤ADsin¡ÏCAD. ÒòΪS¡÷ABD=2S¡÷ADC,¡ÏBAD=¡ÏCAD,ËùÒÔAB=2AC. ÓÉÕýÏÒ¶¨Àí¿ÉµÃ sinBsinC1212 = ACAB=. 12(2)ÒòΪS¡÷ABD¡ÃS¡÷ADC=BD¡ÃDC,ËùÒÔBD=¡Ì2. ÔÚ¡÷ABDºÍ¡÷ADCÖÐ,ÓÉÓàÏÒ¶¨ÀíÖª AB2=AD2+BD2-2AD¡¤BDcos¡ÏADB,AC2=AD2+DC2-2AD¡¤DCcos¡ÏADC. ¹ÊAB2+2AC2=3AD2+BD2+2DC2=6.ÓÉ(1)ÖªAB=2AC,ËùÒÔAC=1. 23.(2015¡¤È«¹ú1¡¤ÎÄT17)ÒÑÖªa,b,c·Ö±ðΪ¡÷ABCÄÚ½ÇA,B,CµÄ¶Ô±ß,sin2B=2sin Asin C. (1)Èôa=b,Çócos B; (2)ÉèB=90¡ã,ÇÒa=¡Ì2,Çó¡÷ABCµÄÃæ»ý. ¡¾½âÎö¡¿(1)ÓÉÌâÉè¼°ÕýÏÒ¶¨Àí¿ÉµÃb=2ac. ÓÖa=b,¿ÉµÃb=2c,a=2c. 222 ÓÉÓàÏÒ¶¨Àí¿ÉµÃcos B=a+c-b=1. 2 2ac4 (2)ÓÉ(1)Öªb=2ac. ÒòΪB=90¡ã,Óɹ´¹É¶¨ÀíµÃa+c=b. ¹Êa2+c2=2ac,µÃc=a=¡Ì2. ËùÒÔ¡÷ABCµÄÃæ»ýΪS=ac=1. 24.(2015¡¤Õ㽡¤ÀíT16)ÔÚ¡÷ABCÖÐ,ÄÚ½ÇA,B,CËù¶ÔµÄ±ß·Ö±ðÊÇa,b,c,ÒÑÖªA=4,b2-a2=c2. (1)Çótan CµÄÖµ; (2)Èô¡÷ABCµÄÃæ»ýΪ3,ÇóbµÄÖµ. ¡¾½âÎö¡¿(1)ÓÉb2-a2=c2¼°ÕýÏÒ¶¨ÀíµÃsin2B-=sin2C,ËùÒÔ-cos 2B=sin2C. 2221 1 1 ¦Ð 1 2122 2 2 2 ÓÖÓÉA=4,¼´B+C=¦Ð,µÃ-cos 2B=sin 2C=2sin Ccos C,½âµÃtan C=2. (2)ÓÉtan C=2,C¡Ê(0,¦Ð)µÃsin C=2¡Ì5,cos C=¡Ì5. 55¦Ð 34ÓÖÒòΪsin B=sin(A+C)=sin(4+C), ËùÒÔsin B= 3¡Ì10. 10 3¦Ð ÓÉÕýÏÒ¶¨ÀíµÃc=2¡Ì2b, ÓÖÒòΪA=,bcsin A=3,ËùÒÔbc=6¡Ì2.¹Êb=3. 4225.(2015¡¤É½¶«¡¤ÀíT16)Éèf(x)=sin xcos x-cos(x+4). 2 ¦Ð1 ¦Ð (1)Çóf(x)µÄµ¥µ÷Çø¼ä; (2)ÔÚÈñ½Ç¡÷ABCÖÐ,½ÇA,B,CµÄ¶Ô±ß·Ö±ðΪa,b,c.Èôf(2)=0,a=1,Çó¡÷ABCÃæ»ýµÄ×î´óÖµ. ¡¾½âÎö¡¿(1)ÓÉÌâÒâÖª ¦Ð ¦Ð 1+cos(2x+2)f(x)=sin2x? 22¦Ð ¦Ð A = sin2x1-sin2x=sin 2x-1. ?222ÓÉ-2+2k¦Ð¡Ü2x¡Ü2+2k¦Ð,k¡ÊZ,¿ÉµÃ-4+k¦Ð¡Üx¡Ü4+k¦Ð,k¡ÊZ; ÓÉ2+2k¦Ð¡Ü2x¡Ü+2k¦Ð,k¡ÊZ,¿ÉµÃ4+k¦Ð¡Üx¡Ü+k¦Ð,k¡ÊZ. ËùÒÔf(x)µÄµ¥µ÷µÝÔöÇø¼äÊÇ[-4+k¦Ð,4+k¦Ð](k¡ÊZ); µ¥µ÷µÝ¼õÇø¼äÊÇ[4+k¦Ð,4+k¦Ð](k¡ÊZ). (2)ÓÉf(2)=sin A-=0,µÃsin A=, ÓÉÌâÒâÖªAΪÈñ½Ç,ËùÒÔcos A=. 2 ¡Ì3¦Ð ¦Ð 3¦Ð 2¦Ð 3¦Ð4¦Ð¦Ð ¦Ð3¦Ð A 1212 ÓÉÓàÏÒ¶¨Àía2=b2+c2-2bccos A, ¿ÉµÃ1+¡Ì3bc=b2+c2¡Ý2bc, ¼´bc¡Ü2+¡Ì3,ÇÒµ±b=cʱµÈºÅ³ÉÁ¢. Òò´Ëbcsin A¡Ü 12 2+¡Ì3. 44 ËùÒÔ¡÷ABCÃæ»ýµÄ×î´óֵΪ2+¡Ì3. 26.(2015¡¤ÉÂÎ÷¡¤ÀíT17)¡÷ABCµÄÄÚ½ÇA,B,CËù¶ÔµÄ±ß·Ö±ðΪa,b,c,ÏòÁ¿m=(a,¡Ì3b)Óën=(cos A,sin B)ƽÐÐ. (1)ÇóA;
Ïà¹ØÍÆ¼ö£º