精 品 文 档
调递增,h(a)?h(1)?11?1无解;…………6分 ?1,故lna?2a2综上可得a?2.…………7分
(II)证法一:先证明:e1?x?2?x(略).
111Qa????f?x??(?e1?x?ax?)?lnx?ax2?x?e1?x?222
11?lnx?x2?x?(2?x)?22123x?2x?.…………9分 22131设M(x)?lnx?x2?2x?,M,(x)??x?2?2?2?0.
22x13?M(x)在(0,??)上单调递增,Qx?1,?M(x)?M(1)?0??2??0.
221即f?x??(?e1?x?ax?)>0.证毕.…………12分
2111证法二Qa????f?x??(?e1?x?ax?)?lnx?ax2?x?e1?x?
22211?lnx?x2?x?e1?x??lnx?e1?x?1
22?lnx?令?(x)?lnx?e令g(x)?1?xe'1?x11?x1?xe1?x?1,则?(x)??e?
xx''1?x1?x,则g(x)??(1?x)e?0,故g(x)?1?xe1?x?g(1)?0,
11?x1?xe1?x?(x)??e??0,?(x)?lnx?e1?x?1??(1)?0.
xx
试 卷
相关推荐: