第一范文网 - 专业文章范例文档资料分享平台

小学数学图形计算例题大汇总

来源:用户分享 时间:2025/5/17 13:22:44 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

第一讲 不规则图形面积的计算(一)

我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:

实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

解:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

又因为S甲+S乙=12×12+10×10=244,

所以阴影部分面积=244-(50+132+12)=50(平方厘米)。

例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.

解:因为△ABE、△ADF与四边形AECF的面积彼此相等,所以四边形AECF的面积与△ABE、△ADF的面积都等于正方形ABCD

在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。

解:在等腰直角三角形ABC中 ∵AB=10

∵EF=BF=AB-AF=10-6=4,

∴阴影部分面积=S△ABG-S△BEF=25-8=17(平方厘米)。

例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积.

解:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,所以它们的面积相等,都等于5平方厘米.

所以△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。 又由于△ACE与△ACD等底、等高,所以△ACE的面积是15平方厘米。 例5 如下页右上图,在正方形ABCD中,三角形ABE的面积是8平方厘

解:过E作BC的垂线交AD于F。

在矩形ABEF中AE是对角线,所以S△ABE=S△AEF=8.在矩形CDFE中DE是对角线,所以S△ECD=S△EDF。

例6 如右图,已知:S△ABC=1,

解:连结DF。 ∵AE=ED,

∴S△AEF=S△DEF;S△ABE=S△BED,

搜索更多关于: 小学数学图形计算例题大汇总 的文档
小学数学图形计算例题大汇总.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c57wcg2qbr60a6ri16ozy38gut0xt46013sv_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top