?2X0(X?X)?1X?SY???00?23063.27?0.2661
18?2?1?409.12?20.23ÔÚ5%µÄÏÔÖøÐÔˮƽÏ£¬×ÔÓɶÈΪ18-2-1=15µÄt·Ö²¼µÄÁÙ½çֵΪt0.025(15)?2.131£¬ÓÚÊÇY¾ùÖµµÄ95%µÄÔ¤²âÇø¼äΪ
1235.22?2.131?20.23 »ò £¨1192.12,1278.32£©
ͬÑùÈÝÒ׵õ½Y¸öÖµµÄÔ¤²âµÄ±ê×¼²îΪ
?2[1?X0(X?X)?1X?SY???0]0?23063.27?1.266118?2?1
?1946.67?44.12ÓÚÊÇ£¬Y¸öÖµµÄ95%µÄÔ¤²âÇø¼äΪ
1235.22?2.131?44.12 »ò (1141.20,1329.24£©
3¡ª15 ¸ù¾Ý100¶Ô£¨X1£¬Y£©µÄ¹Û²ìÖµ¼ÆËã³ö
?x¼ÆÁ¿¡£
21?12£¬?x1y??9£¬?y2?30
£¨1£©Çó³öһԪģÐÍY??0??1X1??ÖÐµÄ ?1µÄOLS¹À¼ÆÁ¿¼°ÆäÏàÓ¦µÄ±ê×¼²îµÄ¹À
£¨2£©ºóÀ´·¢ÏÖY»¹Êܵ½X2µÄÓ°Ï죬ÓÚÊǽ«Ò»ÔªÄ£Ð͸ÄΪ¶þԪģÐÍ
Y??0??1x1??2x2??
ÊÕ¼¯X2µÄÏàÓ¦¹Û²ìÖµ²¢¼ÆËã³ö
?x22?6£¬?x2y?8£¬?x1x2?2
Çó¶þԪģÐÍÖеÄ?1£¬?2µÄOLS¹À¼ÆÖµ¼°ÆäÏàÓ¦µÄ±ê×¼²î¹À¼ÆÁ¿¡£
?Óë¶þԪģÐÍÖеÄ??1ÊÇ·ñÏàµÈ£¿ÎªÊ²Ã´£¿ £¨3£©Ò»ÔªÄ£ÐÍÖеÄ?1
½â´ð£º
??£¨1£© ?1?xy?x2ii1i2i1??9??0.75 12??
2uy?????1?xi1yin?2 30?0.75?(?9)??0.375100?22x?i12?u??)?Var(?1?0.375?0.03125 12S???0.03125?0.1768
1£¨2£© ¼ÇÑù±¾µÄ¶þÔªÏßÐÔÄ£ÐÍÀë²îÐÎʽΪ
?1x1???2x2??? y??ÔòÓÐ
?1??xy?xy??x?xxi22i1i1iii2i1?xx?x?xx?xi1i22i2i1i22i2?9286?70????1.0294 1226826
?x?xy12?9?xx?xy?28?114?1.6765 ???12268?x?xx26?xx?x??xy????xyy??????2i1i1ii2i12i1i2i1i2i12ii1i22i221i1i2i2i?n?3
30?[?1.029?(?9)]?1.6765?8??0.2665100?3Óɲ¹³äÌâ3¡ª11Öª
??S??1???x?x2i1?x2i22i2?(?xi1xi2)2
?0.2665?6?0.0235?0.1533212?6?2
2x?i12i2??S??2???x?x2i1?(?xi1xi2)2
?0.2665?12?0.0470?0.216912?6?22?Óë¶þԪģÐÍÖеÄ??1²»ÏàµÈ¡£Ö÷ÒªÔÒòÔÚÓÚX1Ó루3£©ÓÉÉÏÊö¼ÆËã½á¹ûÖª£¬Ò»ÔªÄ£ÐÍÖеÄ?1X2ÓÐÏà¹ØÐÔ¡£Èç¹ûËüÃÇÊÇÏßÐÔÎ޹ص쬼´?xi1xi2?0£¬ÔòÈÝÒ×ÑéÖ¤¶þÕßÏàµÈ¡£
3¡ª16¿¼ÂÇÒÔÏÂÔ¤²âµÄ»Ø¹é·½³Ì£º
Yt??120?0.10Ft?5.33Rt£¬ R2?0.50
ÆäÖУ¬YtΪµÚtÄêµÄÓñÃײúÁ¿£¨µ¥Î»£º¶Ö/Ķ£©£¬FtΪµÚtÄêµÄÊ©·ÊÇ¿¶È£¨µ¥Î»£ºÇ§¿Ë/Ķ£©£¬Rt ΪµÚtÄêµÄ½µÓêÁ¿£¨µ¥Î»£ººÁÃ×£©¡£
£¨1£©´ÓFºÍR¶ÔYµÄÓ°Ïì·½Ãæ£¬Ëµ³ö±¾·½³ÌÖÐϵÊý0.10ºÍ5.33µÄº¬Òå¡£ £¨2£©³£ÊýÏî-120ÊÇ·ñÒâζ×ÅÓñÃ׵ĸº²úÁ¿¿ÉÄÜ´æÔÚ£¿ £¨3£©¼Ù¶¨?FµÄÕæÊµÖµÎª0.40£¬Ôò¹À¼ÆÖµÊÇ·ñÓÐÆ«£¿ÎªÊ²Ã´£¿
£¨4£©¼Ù¶¨¸Ã·½³Ì²¢²»Âú×ãËùÓеľµäÄ£ÐͼÙÉ裬¼´²¢²»ÊÇ×î¼ÑÏßÐÔÎÞÆ«¹À¼ÆÖµ£¬ÊÇ·ñÒâζ×Å?RµÄÕæÊµÖµ¾ø¶Ô²»µÈÓÚ5.33£¿ÎªÊ²Ã´£¿ 1Ķ=
100002m 15½â´ð£º
£¨1£©ÔÚ½µÓêÁ¿²»±äʱ£¬Ã¿Ä¶Ôö¼Ó1ǧ¿Ë·ÊÁϽ«Ê¹µÚtÄêµÄÓñÃײúÁ¿Ôö¼Ó0.1¶Ö/Ķ£»ÔÚÿĶʩ·ÊÁ¿²»±äµÄÇé¿öÏ£¬Ã¿Ôö¼Ó1ºÁÃ׵ĽµÓêÁ¿½«Ê¹µÚtÄêµÄÓñÃײúÁ¿Ôö¼Ó5.33¶Ö/Ķ¡£ £¨2£©ÔÚÖֵصÄÒ»ÄêÖв»Ê©·ÊÒ²²»ÏÂÓêµÄÏÖÏóͬʱ·¢ÉúµÄ¿ÉÄÜÐÔ¼«Ð¡£¬ËùÒÔÓñÃ׵ĸº²úÁ¿²»¿ÉÄÜ´æÔÚ¡£ÊÂʵÉÏ£¬ÕâÀï½Ø¾àÏîΪ¸ºÎÞʵ¼ÊÒâÒå¡£
£¨3£©Èç¹û?FµÄÕæÊµÖµÎª0.40£¬Ôò±íÃ÷¸Ã¹À¼ÆÖµÓëÕæÖµÓÐÆ«Î󣬵«Ò»°ã²»Ëµ0.1ÊÇÓÐÆ«¹À¼Æ¡£ÀíÓÉÊÇ0.1ÊDzÎÊýµÄÒ»¸ö¹À¼ÆÖµ£¬¶øËùν¹À¼ÆÁ¿µÄÓÐÆ«ÊÇÕë¶Ô¹À¼ÆµÄÆÚÍûÀ´ËµµÄ£¬¼´Èç¹ûÈ¡±éËùÓпÉÄܵÄÑù±¾£¬ÕâЩ²ÎÊý¹À¼ÆÖµµÄƽ¾ùÖµµÄÓë0.4ÓÐÆ«ÎóµÄ»°£¬¾Í˵¹À¼ÆÊÇÓÐÆ«µÄ¡£ £¨4£©²»Ò»¶¨¡£¼´Ê¹¸Ã·½³Ì²¢²»Âú×ãËùÓеľµäÄ£ÐͼÙÉ裬²»ÊÇ×î¼ÑÏßÐÔÎÞÆ«¹À¼ÆÖµ£¬Ò²ÓпÉÄÜʹµÃ³öµÄ¹À¼ÆÏµÊýµÈÓÚ5.33¡£
3¡ª17 ÒÑÖªÊý¾ÝÈç±í3¡ª2¡£
±í3¡ª2
Y 1 3 8 15 28 X1 1 2 3 4 5 X2 10 9 5 1 -6 £¨1£©Ïȸù¾Ý±íÖÐÊý¾Ý¹À¼ÆÒ»Ï»عéÄ£Ð͵ķ½³Ì£¨Ö»¹À¼Æ²ÎÊý²»ÓùÀ¼Æ±ê×¼²î£©£º
Yi??0??1X1i??1i Yi??0??2X2i??2i
Yi??0??1X1i??2X2i??i
£¨2£©»Ø´ðÏÂÁÐÎÊÌ⣺?1??1Âð£¿ÎªÊ²Ã´£¿?2??2Âð£¿ÎªÊ²Ã´? ½â´ð£º
£¨1£©¶ÔÓÚYi??0??1X1i??1iµÄ¹À¼Æ½á¹ûÈçͼ3¡ª3Ëùʾ¡£
Dependent Variable: Y Included observations: 5 Variable C X1 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient Std. Error -8.800000 3.942926 t-Statistic -2.231845 Prob. 0.1118 0.0115 11.00000 10.93161 5.775588 5.619363 30.82075 0.011526 6.600000 1.188837 5.551644 0.911297 Mean dependent var 0.881729 S.D. dependent var 3.759433 Akaike info criterion 42.40000 Schwarz criterion -12.43897 F-statistic 1.529245 Prob(F-statistic ) ͼ3¡ª3
¼´ÓÐ Y??8.8?6.6X1 ¶ÔÓÚYi??0??2X2i??2iµÄ¹À¼Æ½á¹ûÈçͼ3¡ª4Ëùʾ¡£
Dependent Variable: Y Included observations: 5 Variable Coefficient Std. Error C 17.34075 0.481444 X2 -1.668618 0.069060 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat t-Statistic 36.01820 -24.16180 Prob. 0.0000 0.0002 11.00000 10.93161 2.921991 2.765766 583.7925 0.000155 0.994887 Mean dependent var 0.993183 S.D. dependent var 0.902551 Akaike info criterion 2.443794 Schwarz criterion -5.304977 F-statistic 1.948272 Prob(F-statistic ) ͼ3¡ª4
¼´ÓÐ Y?17.34?1.66X2 ¶ÔÓÚYi??0??1X1i??2X2i??iµÄ¹À¼Æ½á¹ûÈçͼ3¡ª5Ëùʾ¡£
Dependent Variable: Y Included observations: 5 Variable C X1 X2 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient 21.92222 -1.177778 -1.944444 Std. Error 4.355258 1.113026 0.269316 t-Statistic 5.033507 -1.058176 -7.219949 Prob. 0.0373 0.4009 0.0186 11.00000 10.93161 2.877389 2.643052 304.1064 0.003278 0.996722 Mean dependent var 0.993445 S.D. dependent var 0.885061 Akaike info criterion 1.566667 Schwarz criterion -4.193473 F-statistic 2.912057 Prob(F-statistic ) ͼ3¡ª5
¼´ÓÐ Y?21.92?1.178X1?1.944X2
???1.18£¬ÏÔÈ»??¡£ ?1?6.6£¬??1??£¨2£©´ÓÉÏÊö»Ø¹é½á¹û¿ÉÖª?11???1.67£¬????1.94£¬ÏÔÈ»?????¡£ ͬÑùµØ£¬?1222¶þÔª»Ø¹éÓë·Ö±ð¶ÔX1ÓëX2Ëù×÷µÄÒ»Ôª»Ø¹é£¬ÆäÏàÓ¦µÄ²ÎÊý¹À¼Æ²»ÏàµÈ£¬Ö÷ÒªÔÒòÔÚÓÚX1ÓëX2ÓкÜÇ¿µÄÏà¹ØÐÔ£¬ÊÂʵÉÏÁ½ÕßµÄÏà¹ØÏµÊýΪr??0.9679¡£
Ïà¹ØÍÆ¼ö£º