∴当2x?当2x??6??2,即x??6?时,f(x)max?157?? 244?6??3或2x??62???时,即x?或x?时, 3124
153f(x)min????
244
18.(本小题满分12分)
π?1?已知函数f(x)?cos2?x??,g(x)?1?sin2x.
12?2?(1)设x?x0是函数y?f(x)图象的一条对称轴,求g(x0)的值; (2)求函数h(x)?f(x)?g(x)的单调递增区间.
1π解:(I)由题设知f(x)?[1?cos(2x?)].
26因为x?x0是函数y?f(x)图象的一条对称轴,所以2x0? π(k?Z). 611π所以g(x0)?1?sin2x0?1?sin(kπ?).
226π?kπ, 6即2x0?kπ?113?π?当k为偶数时,g(x0)?1?sin????1??,
2?6?441π15当k为奇数时,g(x0)?1?sin?1??.
2644(II)h(x)?f(x)?g(x)?1?π??1?1?cos2x??1?sin2x ????2?6??2??31??π??31?31??cos?2x???sin2x????cos2x?sin2x?? ??2??6?2222???21π?3??sin?2x???. 23?2?πππ5ππ当2kπ?≤2x?≤2kπ?,即kπ?≤x≤kπ?(k?Z)时,
23212121π?3?函数h(x)?sin?2x???是增函数,
23?2?5ππ??故函数h(x)的单调递增区间是?kπ?,kπ??(k?Z).
1212??
相关推荐: