第一范文网 - 专业文章范例文档资料分享平台

高中数学集合知识点总结 

来源:用户分享 时间:2025/5/26 11:53:40 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

一:集合

1、分类 非负整数集(即自然数集) 记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 2、列举法:{a,b,c??}

R| x-3(3、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x>2} ,{x| x-3>2}

4、语言描述法: 5、Venn图: 韦 恩 图

质 A A=A A Φ=Φ A B=B A A B A A B B A A=A A Φ=A A B=B A A B A A B B

(CuA) (CuB) = Cu (A B) (CuA) (CuB) = Cu(A B) A (CuA)=U A (CuA)= Φ.

6、集合的分类:

有限集 含有有限个元素的集合 无限集 含有无限个元素的集合 空集 不含任何元素的集合

二、集合间的基本关系 1.“包含”关系—子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” A(即:① 任何一个集合是它本身的子集。A

B那就说集合A是集合B的真子集,记作A B(或B A)(B,且A(②真子集:如果A C(C ,那么 A(B, B(③如果 A

B(④ 如果A A 那么A=B(同时 B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集 三、集合的运算 运算类型 交 集 并 集 补 集 定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).

设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作 ,即 CSA=

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;

(3)指数、对数式的底必须大于零且不等于1. (4)指数为零底数不可以等于零,

(5)实际问题中的函数的定义域还要保证实际问题有意义.

相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备) 2. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x), (2) 画法 描点法:

图象变换法 1平移变换 2伸缩变换 3对称变换 3、映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f(对应关系):A(原象) B(象)” 对于映射f:A→B来说,则应满足:

(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中对应的象可以是同一个; (3)不要求集合B中的每一个元素在集合A中都有原象。 3.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

二.函数的性质 1.函数的单调性 (1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

(2)减函数

如果对于区间D上的任意两个自变量的值x1,x2,当x1

○1 任取x1,x2∈D,且x1

○3 变形(通常是因式分解和配方); ○4 定号(即判断差f(x1)-f(x2)的正负);

○5 下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) 8.函数的奇偶性(整体性质) (1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤:

○1首先确定函数的定义域,并判断其是否关于原点对称; ○2确定f(-x)与f(x)的关系;

○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 指数函数的图象和性质 a>1 0

定义域 R 定义域 R 值域y>0 值域y>0

在R上单调递增 在R上单调递减 非奇非偶函数 非奇非偶函数 函数图象都过定点(0,1)

2、对数函数的性质: a>1 0

定义域x>0 定义域x>0 值域为R 值域为R

在R上递增 在R上递减 函数图象都过定点(1,0)

函数图象都过定点(0,1) 函数图象都过定点(1,0)

搜索更多关于: 高中数学集合知识点总结  的文档
高中数学集合知识点总结 .doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c59n0r08dje3y3j84vsq02xzhu2kzfw009qw_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top