第一范文网 - 专业文章范例文档资料分享平台

2014年全国各地中考数学真题分类解析汇编:32 点直线与圆的位置关系

来源:用户分享 时间:2025/5/15 18:46:11 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

(3)设AO与PM的交点为D,连接MQ,如下图3,易证AO∥MQ,从而得到△PDO∽△PMQ,△BMQ∽△BAO,又PO=OQ=BQ,从而可以求出MQ、OD,进而求出PD、DM、AM、CM的值. 解答:解 :(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示. ∵AB与⊙O相切于点A, ∴OA⊥AB. ∴∠OAB=90°. ∵OQ=QB=1, ∴OA=1. ∴AB===. ∵△ABC是等边三角形, ∴AC=AB=∵sin∠HAB=,∠CAB=60°. , ∴HB=AB?sin∠HAB ==. ∴S△ABC=AC?BH =×=× . . × ∴△ABC的面积为(2)①当点A与点Q重合时, 线段AB与圆O只有一个公共点,此时α=0°; ②当线段A1B所在的直线与圆O相切时,如图2所示, 线段A1B与圆O只有一个公共点, 此时OA1⊥BA1,OA1=1,OB=2,

∴cos∠A1OB=∴∠A1OB=60°. =. ∴当线段AB与圆O只有一个公共点(即A点)时, α的范围为:0°≤α≤60°. (3)连接MQ,如图3所示. ∵PQ是⊙O的直径, ∴∠PMQ=90°. ∵OA⊥PM, ∴∠PDO=90°. ∴∠PDO=∠PMQ. ∴△PDO∽△PMQ. ∴== ∵PO=OQ=PQ. ∴PD=PM,OD=MQ. 同理:MQ=AO,BM=AB. ∵AO=1, ∴MQ=. ∴OD=. ∵∠PDO=90°,PO=1,OD=, ∴PD=∴PM=∴DM=. . . ∵∠ADM=90°,AD=A0﹣OD=, ∴AM===. ∵△ABC是等边三角形,

∴AC=AB=BC,∠CAB=60°. ∵BM=AB, ∴AM=BM. ∴CM⊥AB. ∵AM=∴BM=∴AC=∴CM===. . , ,AB=. . ∴CM的长度为 点评:本 题考查了等边三角形的性质、相似三角形的性质与判定、直线与圆相切、勾股定理、特殊三角函数值等知识,考查了用临界值法求角的取值范围,综合性较强.

10. (2014?泰州,第25题,12分)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.

(第2题图)

(1)若直线AB与①求∠CFE的度数;

②用含b的代数式表示FG2,并直接写出b的取值范围;

(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由. 考点:圆 的综合题 分析:( 1)连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°, (2)作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的范围, (3)当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用两条直线垂直相交求出交点P的坐标, 解答:解 :(1)连接CD,EA, 有两个交点F、G.

∵DE是直径, ∴∠DCE=90°, ∵CO⊥DE,且DO=EO, ∴∠ODC=OEC=45°,

2014年全国各地中考数学真题分类解析汇编:32 点直线与圆的位置关系.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c59n5i9ihgz2r4yj9c20z_7.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top