0,x?3????,转求最值即可. 22x?2?2,1?x?3?????3x2?bx?2,x?1详解:(1)当a?2时,f?x??2x?1?x?bx ??2.
??x?bx?2,0?x?122?b??1??6由函数f?x?在?0,???上单调递增,得?,化简得b?2.
b??1??2∴实数b的取值范围b?2.
(2)当a??1且x?1,???时,f?x???x?1?x?bx?bx?1,
22?f?x?2????x?2??1??x?2??b?x?2?,
由f?x?2??f?x?得,??x?2??1??x?2??b?x?2??bx?1,
22220,x?3??化简得:2b?x?4x?3?x?4x?3 ??, 22x?2?2,1?x?3????22∴2b??2,解得b??1. ∴实数b的最大值是?1.
点睛:研究分段函数的单调性注意两点:(1)分析各段的单调性;(2)注意端点处取值的大小;恒成立问题处理手段首选变量分离,然后转最值即可.
222.已知各项为正的数列{an}满足a1?1,an?1?2an??.
(1)若??0,求a2,a3,a4的值;
?1?(2)若??3,证明:3????2?【答案】(1) a?2【解析】
n?2?an?3.
782,a3?2,a4?2 (2)见解析
342分析:(1)由a1?1与递推关系逐一求得各项;(2)分两步:先证明an?3,由an?1?9?2?an?3?易证明,
?1?再证明an?3????2?从而得证.
n?2,易证an?1?1,进而由
an?1?3221???可得3?an?1?3?an?1?,
an?3an?1?31?3222详解:(1)a1?1,??0,∴an?1?2an,又数列?an?各项为正.
2∴a2?2,a2?2;
a3?2a2?22?2,a3?2;
23234a42?2a3?2?2?2,a4?2.
2(2)??3时,an?1?2an?3.
347478(i)先证:an?3. ∵an?1?9?2?an?3?,∴
2an?1?32??0,
an?3an?1?3∴an?1?3与an?3同号,又a1?3?0,∴an?3?0,∴an?3.
?1?(ii)再证:an?3????2?∵a2n?1n?2.
an?1?3221???, ?2an?3?3,∴an?1?3?1,∴
an?3an?1?31?32当n?2时,3?an?1?3?an?1?, 2n?1?1?∴3?an??3?a1????2??1?∴an?3????2?n?2?1?????2?n?2,
n?2?1?.又a1?1,∴an?3????2?.
点睛:证明数列型不等式手段多样,本题利用循环递缩的方式即
11?3?an??3?an?1?,3?an??3?a1????2?2?的关系.
n?1?1?????2?n?2,由相邻的关系循环利用此关系得到第n项与首相
相关推荐: