仿真设计报告
内 容 学 院 专 业 班 级 学 号 学生姓名 指导教师 完成日期 年 月 日
转速、电流双闭环直流调速系统的Simulink仿真设计
一、系统设计目的
直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。根据直流电动机的工作原理建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,设计了一套实验用双闭环直流调速系统。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。
二、系统理论分析
2.1 双闭环直流调速系统工作原理
电动机在启动阶段,电动机的实际转速低于给定值,速度调节器的输入端偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到最大给定值, 电动机以最大电流恒流加速启动。电动机的最大电流可通过整定速度调节器的输出限幅值来改变。在转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。对负载引起的转速波动,速度调节器输入端偏差信号将随时通过速度调节器、电流调节器修正触发器的移相电压,使整流桥输出的直流电压相应变化,校正和补偿电动机的转速偏差。另外电流调节器的小时间常数, 还能对因电网波动引起的电枢电流的变化进行快速调节,可在电动机转速还未来得及发生改变时,迅速使电流恢
1
复到原来值,从而使速度稳定于某一转速。 2.2 双闭环直流调速系统组成
为实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流。两者实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成转速、电流双闭环调速系统。
图1 转速、电流双闭环直流调速系统
其中:ASR-转速调节器 ACR-电流调节器 TG-测速发电机 TA-电流互感器 UPE-电力电子变换器 Un-转速给定电压 Un-转速反馈电压 Ui-电流给定电压 Ui-电流反馈电压
2.3 双闭环直流调速系统分析
一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态。这种理想的起动过程如图2所示。
** 2
n idm n idl 0 t
图2理想启动过程
图3双闭环直流调速系统动态结构图
参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图如图3所示。 2.4 双闭环直流调速系统参数描述 参数:Ce?UN?INRa220?136?0.2??0.132V
nN1460L15?10?3Tl???0.03
R0.5
GD2R22.5?0.5Tm???0.18
30375CeCm375?0.132??0.132
?Cm?30??Ce?1.26
三、系统模型设计
3
相关推荐: