构起始里程桩号左K5+383,852、右K5+
383.392;隧道终结于三山街站,终止里程桩号K6+067.193(左线)、K6+067.197(右线),区间隧道左线全长约为683.3m,左线全长约为683.8m。平面轴线左右线各有三曲线段剐、直径450m,纵向最大坡度为3.3%。
本区间隧道的外径为φ6 200,内径qb5 500。亦即隧道衬砌外径为6.2m,内径为5.5m,隧道衬砌每环宽度为1.2m,厚0.35m,分6块,采用小封顶形式。整环管片由封顶块、两块邻接块和三块标准块,共6块构成。纵向(即环与环之间)与环向(即一环管片中块与块之间)均采用M30的弯螺栓手孔式连接,衬砌的设计抗压强度为C50,抗渗强度为S1O,管片采用错缝拼装的施工工艺。本标段隧道工程衬砌接缝防水采用水膨性橡胶和氯丁橡胶复合压制成的弹性密封垫圈,本工程管片用量1 153环,盾构推进土方量约43 676立方米。盾构机采用日本三菱公司生产的φ6 340土压平衡铰接式盾构。
2.3试验段联络通道施工
施工方法采用冻结加固和矿山法工艺施工。
5
施工流程见图2:
注:右线批进施工工艺同左线施工工艺
图2 施工工艺流程
施工准备--冻结孔施工,同时安装冻结制冷系统--装冻结盆水系统和检测系统,同时进行隧道支撑--探孔试挖--拆钢管片--联络通道掘进与临时支护--联络通道永久支护--泵站开挖与临时支护,泵站永久支护--必要时进行土层充填注浆。
冻结孔施工和联络通道临时支护施工为本工程的关键,冻结检测和联络通道永久支护施工为特殊工序。并注意融沉对周围建筑及管线的影响。
3施工难点及技术处理措施
3.1SMW施工在深厚的杂填土、素填土中以及在硬粘土中施工
在施工前进行地质详勘充分了解地下障碍物情况,选用
6
克服障碍物能力较强的PAS—120桩机,对4m以上深度障碍物采用快速开挖回填的方法处理解决杂填土、素填土中存在的施工 问题 。
由于在下部地层为硬粘土层,SMW施工时造成糊钻,对此首先停止使用膨润土,然后增加钻头上刮刀数量,并经常清理钻头及螺旋翼上的粘土。
本工程SMW工法施工为南京地区首次 应用 ,盾构工作井在开挖期间四周地面最大沉降为16mm,支护结构最大水平位移为23.4mm,地下水为的最大变化值为0.224m,由此可见SMW工法在本工程中施工是成功的。
3.2 邻近中山南路西侧建筑物基坑开挖
应用“时空效应”原理,分小单元开挖,快速支撑,采用垂直运输和水平挖掘分离的开挖方式,避免开挖的支撑的干扰,同时加强对西侧建筑物的沉降检测,确保了施工顺利进行。监测结果表明基坑最大沉降为22.8mm,最大水平位移28.2mm,临近房屋未出现开裂现象。
3.3 盾构过内秦淮河施工
7
盾构穿越处内秦淮河河道宽16.8m,河底距盾构顶部覆土最浅处仅0.7m,为国内外 目前 所施工的盾构隧道中浅覆土之最。另外内秦淮河两侧为浆砌块石驳岸,驳岸上方有众多的旧式房屋,盾构穿越的土层具有一定的流动性,保护房屋的难度较大。见图3
图3盾构穿越内秦淮河环境状况
3.3.1在盾构穿越内秦淮河施工中存在以下风险和难点:
(1)内秦淮河两岸驳岸的保护
内秦淮河两岸驳岸上方坐落的都是旧式房屋,年代久远,在盾构推出驳岸前后,覆土厚度有一突变,如果不能及时调整盾构平衡压力设定导致盾构姿态突变,必然造成驳岸产生沉降和位移,对驳岸和房屋构成危险。
(2)盾构推进轴线的控制
盾构在河底下浅覆土中推进的,上下受到的力不均衡,盾构姿态上扬,压坡困难、隧道上浮,轴线难以控制。而内
8
相关推荐: