秦淮河的覆土最薄处仅0.7m,—旦盾构轴线偏移上扬,将会产生严重后果。
拼装完成的隧道环脱开盾尾后,由于上部压载及自重无法抵抗地下水引起的浮力使隧道上浮。如果不采取相应的加固对策,极易引起隧道局部开裂漏水。
(3)流砂和管涌
在砂土、砂质粉土等易液化的土层中施工,由于盾构推进大刀盘旋转切削挤压扰动,加上过高的水头压力(有时可达0.3—0.5MPa)。液化砂土随地下水沿盾尾和隧道接缝渗漏进人隧道内, 女怀及时采取措施,可能出现局部地基掏空,隧道下沉、螺栓断裂、隧道破坏。
3.3.2采取措施
(1)采用加设抗拔桩和抗浮板并进行河底注浆的加固 方法 用于平衡盾构推进时土体产生的侧向压力,防止流沙和管涌,以便盾构能以较适当的推进力及推进速度快速通过河底危险区。
9
(2)加强内秦淮河驳岸的保护
河边护坡上浇注20cm钢筋混凝土,将浆砌块石连成一体,避免盾构机穿越时岸坡因沉降而产成局部开裂。在盾构机穿越范围内,岸坡上方架设六道水平H型钢支撑,目的在于防范可能引起的岸坡位移现象。采用抗浮板及抗拔桩的方法与直接在河道上覆土相比,节省投资并保持河道的畅通。
(3)土压的设定根据地质情况,河水产生的水压力和抗浮板的自身重量。得表2Ti压。
表2盾构穿越内秦准河平衡土压值考虑到盾构穿越后会带来—定的后期沉降,因此在进行平衡压力设定时以切口前方建筑物变形量
控制在+3~+5mm为宜。
在奉段施工中,真正做到连续均衡施工,保证盾构能以较快的速度穿越。
3.3.3 内秦淮河段浅覆土层施工
10
(1)盾构推进控制
为控制隧道轴线,防止土体因超挖量过大造成的建筑空隙在盾壳上方不能及时填充,进而造成土体在盾构本体处有较大沉降,使得河水涌人隧道,故要切实做好盾构推进过程中推进速率、出土量等推进参数的控制,以此来减少因轴线纠偏而形成的土体超挖量。
(2)同步注浆量控制
随时根据监测情况,来调整同步注浆量和注浆压力,同步注浆量及注浆压力要控制适中,既不能因过少过小而造成河底沉降也不能因过多过大而造成盖板隆起损坏,使河水涌人隧道
(3)盾构姿态的控制
盾构在推进及管片拼装时确保姿态“三不”,即不后退、不变向、不变坡。
(4)保护盖板和防止盾尾漏泥、漏水及隧道上浮的措施。其监测布点如图4。
11
图4盾构穿越内秦淮河的监测布点
3.3.4 已完成过内秦淮河隧道施工效果
在驳岸周围和砼抗浮板上设臵位移沉降测点,加强环境变形监测,每隔二小时进行一次观测,监测点布臵见图。驳岸的变形观测,采取跟踪观测的方法,在盾构推进的同时进行观测。通过采取以上措施,盾构作业仅用了4d时间推进和拼装105~125环,顺利通过内秦淮河河底,各监测点在盾构穿越过程中的最大沉降变化为-14.3mm和+10mm,盾构穿越后最终沉降量见表3。
表3 盾构穿越内秦淮河驳岸及建筑物沉降检测结果图5隧道实测轴线偏差
3.4 三山街盾构出洞
三山盾构机出洞采取单管旋喷加固,但在盾构出洞隧道的断面土层主要为粉砂层且地下水极其丰富,造成单管旋喷效果不佳,不能确保洞门凿开后土的自立性。决定采取大口径管降水方案,降水结果使得地下水由-1.0m左占降至-15m
12
相关推荐: