A.b一定比a先开始滑动
B.a,b所受的摩擦力始终相等 C.当ω=D.当ω=
时,b开始滑动的临界角速度 时,a所受摩擦力的大小为kmg
【解答】解:A、B、两个木块的最大静摩擦力相等.木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律得:木块所受的静摩擦力f=mωr,m、ω相等,f∝r,所以b所受的静摩擦力大于a的静摩擦力,当圆盘的角速度增大时b的静摩擦力先达到最大值,所以b一定比a先开始滑动,故A正确,B错误; C、当b刚要滑动时,有kmg=mω?2l,解得:ω=D、以a为研究对象,当ω= f=mωl,可解得:f=
2
2
2
,故C正确;
时,由牛顿第二定律得: ,故D错误.
故选:AC. 21.(6分)(2015春?南昌校级期末)如图,在正电荷Q的电场中有M、N、P、F四点,M、N、P为直角三角形的三个顶点,F为MN的中点,∠M=30°,M、N、P、F四点处的电势分别用φM、φN、φP、φF表示,已知φM=φN、φP=φF,点电荷Q在M、N、P三点所在平面内,则( )
A.点电荷Q一定在MP的连线上
B.连接PF的线段一定在同一等势面上
C.将正试探电荷从P点搬运到N点,电场力做负功 D.φP>φM
【解答】解:A、点电荷的等势面是一系列的同心圆,对于圆、圆弧上任意两点的连线的中垂线一定通过圆心,故场源电荷在MN的中垂线和FP的中垂线的交点上,在MP的连线上,如图所示,故A正确;
B、φP=φF,线段PF是P、F所在等势面(圆)的一个弦,故B错误;
C、在正的点电荷的电场中,离场源越远,电势越低,将正试探电荷从P点搬运到N点,电势能降低,故电场力做正功,故C错误;
D、在正的点电荷的电场中,离场源越远,电势越低,故φP>φM,故D正确.
第13页(共22页)
故选:AD.
三、非选择题:包括必考题和选考题两部分(一)必考题(共129分) 22.(6分)(2014秋?孝南区校级期末)某同学利用图甲所示实验装置及数字化信息系统获得了小车加速度a与钩码的质量m的对应关系图,如图乙所示,实验中小车(含发射器)的质量为200g,实验时选择了不可伸长的轻质细绳和轻定滑轮,小车的加速度由位移传感器及与之相连的计算机得到.回答下列问题:
(1)根据该同学的结果,小车的加速度与钩码的质量成 非线性 (填“线性”或“非线性”)关系;
(2)由图乙可知,a﹣m图线不经过原点,可能的原因是 存在摩擦力 ;
(3)若利用本实验来验证“小车质量不变的情况下,小车的加速度与作用力成正比”的结论,并直接以钩码所受重力mg作为小车受到的合外力,则实验中应采取的改进措施是 调节轨道的倾斜度以平衡摩擦力 ,钩码的质量应满足的条件是 远小于小车的质量 . 【解答】解:(1)根据该同学的结果得出a﹣m图线是曲线,即小车的加速度与钩码的质量成非线性关系;
(2)从上图中发现直线没过原点,当a=0时,m≠0,即F≠0,也就是说当绳子上拉力不为0时,小车的加速度为0,所以可能的原因是存在摩擦力.
(3)若利用本实验来验证“小车质量不变的情况下,小车的加速度与作用力成正比”的结论,并直接以钩码所受重力mg作为小车受到的合外力,则实验中应采取的改进措施是: ①调节轨道的倾斜度以平衡摩擦力,即使得绳子上拉力等于小车的合力. ②根据牛顿第二定律得,整体的加速度a=
,则绳子的拉力F=Ma=
,知钩码的质
量远小于小车的质量时,绳子的拉力等于钩码的重力,所以钩码的质量应满足的条件是远小于小车的质量. 故答案为:(1)非线性; (2)存在摩擦力;
(3)调节轨道的倾斜度以平衡摩擦力;远小于小车的质量.
第14页(共22页)
23.(9分)(2015?南开区二模)利用如图(a)所示电路,可以测量电源的电动势和内阻,所用的实验器材有:
待测电源,电阻箱R(最大阻值999.9Ω),电阻R0(阻值为3.0Ω),电阻R1(阻值为3.0Ω),电流表
(量程为200mA,内阻为RA=6.0Ω),开关S.
实验步骤如下:
①将电阻箱阻值调到最大,闭合开关S;
②多次调节电阻箱,记下电流表的示数I和电阻箱相应的阻值R; ③以为纵坐标,R为横坐标,作出﹣R图线(用直线拟合); ④求出直线的斜率k和在纵轴上的截距b
回答下列问题:
(1)分别用E和r表示电源的电动势和内阻,则和R的关系式为
=R+(5.0+r) ;
(2)实验得到的部分数据如下表所示,其中电阻R=3.0Ω时电流表的示数如图(b)所示,读出数据,完成下表.答:① 0.110 ,② 9.09 . R/Ω 1.0 2.0 3.0 4.0 5.0 6.0 7.0 ① I/A 0.143 0.125 0.100 0.091 0.084 0.077 ② 6.99 8.00 10.0 11.0 11.9 13.0 ﹣1/A (3)在图(c)的坐标纸上将所缺数据点补充完整并作图,根据图线求得斜率k= 1 AΩ﹣1﹣1,截距b= 6 A;
(4)根据图线求得电源电动势E= 3.0 V,内阻r= 1.0 Ω. 【解答】解:(1)电流表与电阻R1并联,两端电压相等,电阻R1的阻值为3.0Ω,电流表内阻为RA=6.0Ω,则通过电阻R1的电流为为通过电流表的2倍,
电流表示数为I,电路电流为3I,并联电阻R并=2Ω,由图a所示电路图可知,E=3I(R并+R0+R+r),则=R+3
=R+(5.0+r);
﹣1(2)由图b所示可知,电流的倒数为9.09,所以电流I=0.110A;
(3)根据表中实验数据在坐标系内描出对应点,然后作出图象如图所示:
第15页(共22页)
由图示图象可知,图象斜率k=
=
=1,由图示可知,图象截距:b=6.0;
(4)由图示图象与图象的函数表达式可知,k=,b=(5.0+r),代入数据解得,电源电动势E=3.0V时,内阻r=1.0Ω;
故答案为:(1)=R+(5.0+r);(2)0.110;9.09;(3)图象如图所示;1;6;(4)3.0;1.0. 24.(12分)(2015?鞍山二模)公路上行驶的两汽车之间应保持一定的安全距离,当前车突然停止时,后车司机可以采取刹车措施,使汽车在安全距离内停下而不会与前车相撞,通常情况下,人的反应时间和汽车系统的反应时间之和为1s,当汽车在晴天干燥沥青路面上以108km/h的速度匀速行驶时,安全距离为120m,设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的,若要求安全距离仍为120m,求汽车在雨天安全行驶的最大速度. 【解答】解:汽车初速度为:v0=108km/h=30m/s,
在反应时间内,汽车做匀速运动,运动的距离:s1=v0t=30×1m=30m, 汽车在减速阶段的位移:s2=s0﹣s1=120﹣30=90m,
设干燥路面的摩擦因数是μ0,汽车从刹车到停下,汽车运动的距离为s2:
,
得:
,
,
下雨时路面的摩擦因数:
=0.2,
在反应时间内,汽车做匀速运动,运动的距离:s3=vt, 汽车从刹车到停下,汽车运动的距离为s4:
第16页(共22页)
相关推荐: