【解答】解:(1)画树状图为:
共有12种等可能的结果数; (2)画树状图为:
共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4, 所以他们两人恰好选修同一门课程的概率=
=.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
21.(6分)今年我市将创建全国森林城市,提出了“共建绿色城”的倡议.某校积极响应,在3月12日植树节这天组织全校学生开展了植树活动,校团委对全校各班的植树情况道行了统计,绘制了如图所示的两个不完整的统计图.
(1)求该校的班级总数; (2)将条形统计图补充完整;
(3)求该校各班在这一活动中植树的平均数.
【分析】(1)根据统计图中植树12颗的班级数以及所占百分比25%列出算式,即可求出答案;
(2)根据条形统计图求出植树11颗的班级数是4,画出即可; (3)根据题意列出算式,即可求出答案.
【解答】解:(1)该校的班级总数=3÷25%=12, 答:该校的班级总数是12;
(2)植树11颗的班级数:12﹣1﹣2﹣3﹣4=2,如图所示:
(3)(1×8+2×9+2×11+3×12+4×15)÷12=12(颗), 答:该校各班在这一活动中植树的平均数约是12颗数.
【点评】本题考查了统计、条形图和扇形图,能根据图形得出正确信息是解此题的关键.
22.(6分)如图,在正方形ABCD中,AF=BE,AE与DF相交于于点O. (1)求证:△DAF≌△ABE; (2)求∠AOD的度数.
【分析】(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,即可得出结论; (2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠ADF+∠DAO=90°,最后用三角形的内角和定理即可得出结论.
【解答】(1)证明:∵四边形ABCD是正方形, ∴∠DAB=∠ABC=90°,AD=AB, 在△DAF和△ABE中,∴△DAF≌△ABE(SAS),
,
(2)由(1)知,△DAF≌△ABE, ∴∠ADF=∠BAE,
∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°, ∴∠AOD=180°﹣(∠ADF+DAO)=90°.
【点评】此题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和定理,判断出△DAF≌△ABR是解本题的关键.
23.(8分)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.
(1)求温馨提示牌和垃圾箱的单价各是多少元?
(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?
【分析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;
(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.
【解答】解:(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元, 根据题意得,2x+3×3x=550, ∴x=50,
经检验,符合题意, ∴3x=150元,
即:温馨提示牌和垃圾箱的单价各是50元和150元;
(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个, 根据题意得,意,∴
≤y≤52,
,
∵y为正整数,
∴y为42,43,44,45,46,47,48,49,50,51,52,共11中方案; 即:温馨提示牌42个,垃圾箱58个,温馨提示牌43个,垃圾箱57个,温馨提示牌44个,垃圾箱56个,
温馨提示牌45个,垃圾箱55个,温馨提示牌46个,垃圾箱54个,温馨提示牌47个,垃圾箱53个,
温馨提示牌48个,垃圾箱52个,温馨提示牌49个,垃圾箱51个,温馨提示牌50个,垃圾箱50个,
温馨提示牌51个,垃圾箱49个,温馨提示牌52个,垃圾箱48个, 根据题意,费用为30y+150(100﹣y)=﹣120y+15000, 当y=52时,所需资金最少,最少是8760元.
【点评】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.
24.(8分)如图,点M在函数y=(x>0)的图象上,过点M分别作x轴和y轴的平行线交函数y=(x>0)的图象于点B、C. (1)若点M的坐标为(1,3). ①求B、C两点的坐标; ②求直线BC的解析式; (2)求△BMC的面积.
【分析】(1)把点M横纵坐标分别代入y=解析式得到点B、C坐标,应用待定系数法求BC解析式;
(2)设出点M坐标(a,b),利用反比例函数性质,ab=3,用a、b表示BM、MC,求△BMC的面积.
相关推荐: