中考数学专题5 多种函数交叉综合问题
【前言】初中数学所涉及的函数无非也就一次函数,反比例函数以及二次函数。二次函数基本上只会考和一次函数的综合问题,二次函数与反比例函数基本不会涉及。所以如何掌握好一次函数与反比例函数的综合问题就成为了又一重点。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。
【例1】2010,西城,一模
k?9?将直线y?4x沿y轴向下平移后,得到的直线与x轴交于点A?,0?,与双曲线y?(x?0)交
x?4?于点B.
⑴求直线AB的解析式;
⑵若点B的纵标为m,求k的值(用含有m的式子表示).
【思路分析】这种平移一个一次函数与反比例函数交与某一点的题目非常常见,一模中有多套题都是这样考法。题目一般不难,设元以后计算就可以了。本题先设平移后的直线,然后联立即可。比较简单,看看就行.
【解析】将直线y?4x沿y轴向下平移后经过x轴上点A(,0),
设直线AB的解析式为y?4x?b.
949?b?0. 4解得b??9.
∴直线AB的解析式为y?4x?9.
则4?y642A-2O-2-4-6-8246xB 图3
(2)设点B的坐标为?xB,m?,
∵直线AB经过点B, ∴m?4xB?9.
m?9. 4?m?9?∴B点的坐标为?,m?,
?4?∴xB?∵点B在双曲线y?∴m?k
?x?0?上, x
km?9. 4m2?9m∴k?.
4
【例2】2010,丰台,一模
如图,一次函数y1?kx?b的图象与反比例函数y2?(1)求出这两个函数的解析式;
(2)结合函数的图象回答:当自变量x的取值范围满足什么条件时,y1?y2
yB3m的图象相交于A、B两点. x-6O1-2A4x
【思路分析】第一问直接看图写出A,B点的坐标(-6,-2)(4,3),直接代入反比例函数中求m,建立二元一次方程组求k,b。继而求出解析式。第二问通过图像可以直接得出结论。本题虽然简单,但是事实上却有很多变化。比如不给图像,直接给出解析式求y1?y2的区间,考生是否依然能反映到用图像来看区间。数形结合是初中数学当中非常重要的一个思想,希望大家要活用这方面的意识去解题。 【解析】
解:(1)由图象知反比例函数y2?∴3?m的图象经过点B(4,3), xm. ∴m=12. - 412. x∴反比例函数解析式为y2?由图象知一次函数y1?kx?b的图象经过点A(-6,-2) , B(4,3), 1???6k?b??2,?k?,∴? 解得?2 --
4k?b?3. ???b?1.∴一次函数解析式为y1?1x?1. 2 (2)当0 【例3】2010,密云,一模 已知:如图,正比例函数y?ax的图象与反比例函数y?k2?.的图象交于点A?3, x (1)试确定上述正比例函数和反比例函数的表达式; (2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值? (3)M?m,n?是反比例函数图象上的一动点,其中0?m?3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由. 【思路分析】第一问由于给出了一个定点,所以直接代点即可求出表达式。第二问则是利用图像去分析两个函数的大小关系,考生需要对坐标系有直观的认识。第三问略有难度,一方面需要分析给出四边形OADM的面积是何用意,另一方面也要去看BM,DM和图中图形面积有何关系.视野放开就发现四边形其实就是整个矩形减去两个三角形的剩余部分,直接求出矩形面积即可.部分同学会太在意四边形的面积如何求解而没能拉出来看,从而没有想到思路,失分可惜. 【解析】 k 解:(1)将?3,2?分别代入y?ax中y?, x k得2?3a,2?, 32∴a?,k?6. 36∴反比例函数的表达式为:y?; x2 正比例函数的表达式为y?a. 3 (2)观察图象得,在第一象限内,当0?x?3时, 反比例函数的值大于正比例函数的值. (3)BM?DM. 6理由:∵n?, m1 ∴?m?n?3,即S△BMO?3. 2∵AC?OC, 1∴S△AOC??3?2?3. 2∴SOCDB?3?3?6?12.(很巧妙的利用了和的关系求出矩形面积) 12∴BO??4. 363∴BM??. BO23∴DM?3?BM??BM 2 【例4】2010,石景山,一模 b?3n?,且m?n,m、n是关于x的一元二次方已知:y?ax与y?两个函数图象交点为P?m,x程kx2??2k?7?x?k?3?0的两个不等实根,其中k为非负整数. (1)求k的值; (2)求a、b的值; (3)如果y?c?c?0?与函数y?ax和y?b?3交于A、B两点(点A在点B的左侧),线段xAB?3,求c的值. 2【思路分析】本题看似有一个一元二次方程,但是本质上依然是正反比例函数交点的问题。第一问直接用判别式求出k的范围,加上非负整数这一条件得出k的具体取值。代入方程即可求出m,n,继而求得解析式。注意题中已经给定m ∵kx2??2k?7?x?k?3?0为一元二次方程 ∴k?1 x2?4 (2)把k?1代入方程得x2?5x?4?0, 解得x1?1,∵m?n ∴m?1,n?4 把m?1,n?4代入y?ax与y?可得a?4,b?1 b?3 x(3)把y?c代入y?4x与y?4 x34c3?c??4?可得A?,c?,B?,c?,由AB?,可得?? 2c42?4??c?解得c1?2,c2??8,经检验c1?2,c2??8为方程的根。 ∴c1?2,c2??8 【例5】2010,海淀,一模 已知:如图,一次函数y?33的图象在第一象限的交点为A(1,n). x?m与反比例函数y?3x (1)求m与n的值; (2)设一次函数的图像与x轴交于点B,连接OA,求?BAO的度数. 32A1B-2-1O-1-212xy 【思路分析】如果一道题单纯考正反比例函数是不会太难的,所以在中考中经常会综合一些其他方面的知识点。比如本题求角度就牵扯到了勾股定理和特定角的三角函数方面,需要考生思维转换要迅速。第一问比较简单,不说了。第二问先求出A,B具体点以后本题就变化成了一道三角形内线段角的计算问题,利用勾股定理发现OB=OA,从而∠BAO=∠ABO,然后求出∠BAO即可。 解:(1)∵点A(1,n)在双曲线y?∴n?3 又∵A(1,3)在直线y?∴ m?23. 33x?m上, 33上, x(2)过点A作AM⊥x轴于点M.
相关推荐: