2AD ,=∵
4CD ,∴=5 ;故圆的半径为
3RtADCDEAC ,⊥中,△)在(.
2DEAE4 ,===则,则BCO1BDO ,由(≌△)知△
DOCBODBOC ,=∠=∠∴∠
DOCDAE ,∵∠=∠BOCDAE ,∴∠=∠ACED ,∵⊥90AEDOCB °,=∠=∴∠BOCDAE ,
∴△∽△
,即,解得:∴=45BACABC °,=∠∴∠=45FAEAFE °,=∠∴∠=2FEAE ,∴ 10BC ,
==2DEEFDF .==﹣ 20B54分,答案写在答题卡上)个小题,每小题分,共卷一、填空题(本大题共
在同一直角坐标系中,正比例函数10kk (填 x21yk的图象有公共点,=的图象与反比例函数.“>”、“=”或“<”).则 >21
=【解答】解:∵正比例函数的图象与反比例函数1kk 同号,∴、210kk .> xky 的图象有公共点,
∴212326m3mnx2203x2m+2n . ﹣、.一元二次方程=﹣,则﹣ =的两根分别是2+mn3mn ,==﹣【解答】解:由题意可知:,2+23mm ,=23mm+23m ,∴=22nm+233m+2m ﹣∴原式=n+m2 )=(6 ,=6 .故答案为:ABCD23四个顶点的字母中,任取两个字母相互交换它们的位置,交换后.如图,在菱形.
BA . 能使字母在同一条对角线上的概率是、
ABACBCADCDBD6 种情况,互换,互换,互换,互换互换,【解答】解:共有互换,BCAD2 种情况,互换,符合条件的是互换
、=所以交换后能使字母在同一条对角线上的概率是 AB ;
.故答案为:24xOyOABCOAOCxyOA轴上,的边、轴和.如图,在平面直角坐标系分别在中,
矩形
6OC4QABQyx0BC边交>=,点=是(边上一个动点,过点)与=的反比例函,PPBQPQBEAC
上,则此时反比折叠,点于点恰好落在对角线.若将△的对应点沿
)>例函数的解析式是 = yx0 .(
OABCOA6OC4 ,是矩形,,解:∵四边形==【解答】BCOA6ABOC4 ,,==∴==B64 ),∴,(
,),,设, P4Q6 )((
PCAQ ,=,∴=
PB6BQ4 ,=﹣﹣,∴=
tanBQP ,=∠=∴=
tanBAC ,=∵∠==tanBQPtanBAC ,∠=∠∴.
BACBQP ,∴∠=∠ACPQ ,∴∥BE ,连接ACPQBEPBQ 上,的对应点折叠,点∵将△恰好落在对角线沿EHBH ,=∴2AQBQ ,∴==
2 ,∴=12k ,=∴
y ,=∴反比例函数的解析式是
y .故答案为:=
CB1nAn25ABCD′,其中′是正整数,若存在另一个矩形.已知矩形的长和宽分别是′和nABCDD的最小值周长和面积的一半,则满足条件的′,它的周长和面积分别是矩形6 .是 ABCDxy ,′′、【解答】解:设矩形′′的长和宽分别为
,则
①yx③ ,=得:由﹣
2x②0+③ ﹣=,把得:代入
2440bac =﹣×≥,﹣283n ,∴(≥﹣)n 是正整数,∵n6 ,的最小值是∴6 .故答案为: 303分,解答过程写在答题卡上)二、解答题(本大题共个小题,共268y(件)是关元的商品,经调研发现,这种商品每天的销售量.某商店购进一批单价为x (元)的一次函数,其关系如表:于销售单价x 1011121314 (元) y 60901008070 (件)
1yx 之间的关系式;)求(与2wwx之间的关系式,并求出每天销售单价(元),求出(与)设商店每天销售利润为 定为多少时利润最大?1yxykx+b ,的一次函数是与【解答】解:(=)设
,由表得:k10b200 ,=﹣解得:=,yxy10x+200 ;=﹣∴的一次函数是与
2+360x14810x+2002wx
,)﹣﹣)=﹣(()根据题意得:)(﹣=(wx10 ,的二次函数,且二
次项系数为﹣∴<是关于x14w360 ,时,∴当=去掉最大值14 元时利润最大.∴当每天销售单价定为
.如图,在△=与△中,∠ 2EB3BDEBD90AB6BCEBD27ABCABC,=,°,==∠=,
)求证:△(∽△2ABEDtanPAC 的值;∥)若∠ PAECD .=,射线交于点与直线1ABECBD ;
(,求3EBDBAP 的最大值与最小值.绕点(逆时针旋转一周,直接写出线段)若△
1ABCEBD90 °,=∠=【解答】()证明:∵,∠ABECBD ,=∠∴
∠.
,,=∵===, BD2BC3EBAB6 ,
2 ,==∴ABECBD .∴△∽△
2DEBCM .(交)解:如图,设于
ABDEABC90 °,∵,∠∥=DMBABCDMC90 °,=∠∴∠==∠
BDBE2RtDEBEBD90 ,△,中,∵∠在==°,=
5DE ,=∴==
2BM ,===
1DM ,==∴=
CDCD1CM ==,∴,=CDMDCM45 °,=∠∴∠=ABECBD ,∵△∽△
相关推荐: