【聚焦山东中考】
2
1.(2013?淄博)如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为( ) A.(2,2)
B.(2,2)
C.(2,2)
D.(2,2)
.
3.(2013?日照)一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:
x y 3O00 100 3200 96 3500 90 4000 80 (1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式. (2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表: 租出的车辆数 租出每辆车的月收益 未租出的车辆数 所有未租出的车辆每月的维护费 (3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.
第 5 页 共 5 页
4.(2013?枣庄)如图,在平面直角坐标系中,二次函数y=x+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面2
积.
第 6 页 共 6 页
5.(2013?潍坊)为了改善市民的生活环境,我市在某河滨空地处修建一个如图所示的休闲文化广场,在Rt△ABC内修建矩形水池DEFG,使定点D,E在斜边AB上,F,G分别在直角边 BC,AC上;又分别以AB,BC,AC为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设瓷砖,其中AB=243米,∠BAC=60°,设EF=x米,DE=y米. (1)求y与x之间的函数解析式; (2)当x为何值时,矩形DEFG的面积最大?最大面积是多少? (3)求两弯新月(图中阴影部分)的面积,并求当x为何值时,矩形DEFG的面积及等于两弯新月面积的 13?
第 7 页 共 7 页
6.(2013?烟台)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=ax+bx+c的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(-22,0),以0C为直径作半圆,圆心为D. 3(1)求二次函数的解析式; (2)求证:直线BE是⊙D的切线; (3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.
第 8 页 共 8 页
相关推荐: