一、
第一章 自测题
单项选择题(每题3分,共27分).
1.y?lg(x?1)?12?x. ?arccosx的定义域是( )
(A) (?1,??); (B) (?1,1]; (C) (?1,1). 2.设f(x)是二次多项式,f(0)?4, f(1)?2, f(2)?1,则f(x)? ( ) (A)
1211(x?5x?8); (B) (x2?x?4); (C) (x2?4x?8). 2223.下列函数f(x)与g(x)是相同的有( ).
(A)f(x)?cos(arccosx) , g(x)?x 其中x?1; (B)f(x)?x?3 , g(x)?(C)f(x)?lg(4.设f(x)?(x?3)2;
x?1) , g(x)?lg(x?1)?lg(x?1). x?11,g(x)?1?x, 则f[g(x)]? ( ). x111(A)1?; (B)1?; (C) .
x1?xxx?x05.limf(x)?A(A为常数),则f(x)在x0处( ).
(A)一定有定义; (B)一定无定义; (C) 不一定有定义.
6.当x?0时,下列变量是无穷小量的是( ).
1(A)sin; (B)ex; (C)ln(1?x2); (D)ex.
x1?ex,x?07.设f(x)??2 在点x?0连续,则a的值等于( ).
?x?2a,x?0(A)0 ; (B)1; (C)?1; (D)8.若limxn?a?0,则( ).
n???1. 2(A)所有xn?0 ; (B)存在N,当n?N时,xn?0; (C)所有xn?a; (D)一定有n使xn?a. 9.与limxn?a不等价的命题有( ).
n???(A)对任给??0,落在N(a,?)之外的xn至多有限个; (B)对任给??0,落在N(a,?)之内的xn至多有限个;
(C)对任给??0,存在N,当n?N时,xn?a?k?? (k为正常数). 二、
填空题(每题3分,共33分).
1.设f(3x)?2x?1, f(a)?5,则a=________; 2.设f(x)?1?x,则f[f(x)]?________; 1?x3.设f(x)?x3?1,则f(x2)? ________; 4.设f(x)?4x?3,则f[f(x)?2]?________; 5.设f(x?11)?x2?2?3,则f(x)?________; xx6.设f(7.lim8.limn????n1x?1)?,则f(x)?________; x2x?12?n?n?________;
?ln(1?sinx)?________;
x?0tan2x?3ex,x?09.设f(x)??在x?0连续,则a?________;
2x?a,?0?4x2?3?ax?b,limf(x)?0,则a?________,b?________. 10. 设f(x)?x??x?1x2?2x?k?4,则k?________. 11. limx?3x?3三.求解下列各题(每题8分,共40分). 1.补充定义f(0),使f(x)?ln(1?2x)在x?0连续.
arcsin3x11(?)2.求f(x)?xx?1的间断点并指明类型.
11(?)x?1x3.设f(x)在[a,b]上连续,无零点,且f(a)?0;试确定f(b)的符号.
4.证明x?0时,
1?x?1~(4?x?2). 25.证明在区间(0,2)内至少有一点x0使ex0?2?x0.
相关推荐: