1.(2020·深圳调研)设数列{an}是公差不为零的等差数列,其前n项和为Sn,a1=1.若a1,a2,a5成等比数列. (1)求an及Sn;
1(2)设bn=2(n∈N*), 求数列{bn}的前n项和Tn.
an+1-1
2.在等比数列{an}中,a3=9,a4+9a2=54. (1)求{an}的通项公式;
(2)若bn=(2n+1)an,求数列{bn}的前n项和Sn.
3.(2019·安徽六安一中期末)已知等差数列{an}满足a6=6+a3,且a3-1是a2-1,a4的等比中项.
(1)求数列{an}的通项公式;
11(2)设bn=(n∈N*),数列{bn}的前项和为Tn,求使Tn<成立的最大正整数n的值.
7anan+1
4.(2019·天津市新华中学模拟)已知数列{an}中,a1=1,a2=3,其前n项和为Sn,且Sn为等比数列.
(1)求数列{an}的通项公式; (2)若bn=
9an
,记数列{bn}的前n项和为Tn.设λ是整数,问是否存在正整数n,
?an+3??an+1+3?
3λ7
使等式Tn+=成立?若存在,求出n和相应的λ值;若不存在,请说明理由.
5an+18
答案精析
??a1=1,
1.解 (1)设数列{an}的公差为d,由题意,得?
2??a2=a1a5,??a1=1,
即?
2
???a1+d?=a1?a1+4d?,??a1=1,∵d≠0,解得?
??d=2,
∴an=a1+(n-1)d=1+2(n-1)=2n-1, n?a1+an?
Sn==n2.
2
11?1-1?(2)∵bn==?n?,
4n?n+1?4?n+1?
1?1?1?11?1?11?1?1-1?n∴Tn=?1-2?+?2-3?+?3-4?+…+·=. ??4444?nn+1?4?n+1?2.解 (1)设等比数列{an}的公比为q,
2???a1q=9,?a1=1,因为a3=9,a4+9a2=54,所以?解得?
3???a1q+9a1q=54,?q=3,
故{an}的通项公式为an=a1qn-1=3n-1. (2)由(1)可得bn=(2n+1)·3n-1,
则Sn=3+5×3+7×32+…+(2n-1)·3n-2+(2n+1)·3n-1,① 3Sn=3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)·3n,② ①-②得-2Sn=3+2×3+2×32+2×33+…+2·3n-1-(2n+1)·3n =-2n·3n,故Sn=n·3n.
3.解 (1)设等差数列{an}的公差为d,a6-a3=3d=6,即d=2, ∴a3-1=a1+3,a2-1=a1+1,a4=a1+6, ∵a3-1是a2-1,a4的等比中项,
∴(a3-1)2=(a2-1)·a4,即(a1+3)2=(a1+1)(a1+6),解得a1=3. ∴数列{an}的通项公式为an=2n+1. 11(2)由(1)得bn== anan+1?2n+1??2n+3?1?1?1
=?2n+1-2n+3?, 2??∴Tn=b1+b2+…+bn 11111
-+-+…+ =?2?3557
11?- 2n+12n+3??
1?1-1?n
=?3=. ?2n+3?3?2n+3?2?由
n11
<,得n<9,∴使得Tn<成立的最大正整数n的值为8.
73?2n+3?7
4.解 (1)由题意可得S1=a1=1,S2=a1+a2=4,结合题意可知Sn=4n-1, 当n≥2时,Sn-1=4n-2,
则an=Sn-Sn-1=4n-1-4n-2=3×4n-2,
??1,n=1,
故an=?
n-2
??3×4,n≥2.
9×3×4n-29an
(2)当n≥2时,bn== ?an+3??an+1+3??3×4n-2+3??3×4n-1+3?=
119a13=-.而b==, 1
?4n-2+1??4n-1+1?4n-2+14n-1+1?a1+3??a2+3?8
3×4n-2
3由此,当n=1时,T1=b1=,
83λ7
从而等式Tn+=,
5an+183λ7即为+=,
858
5
解得λ=,它不是整数,不符合题意.
2
当n≥2时,Tn=b1+b2+…+bn 3?1-1?=+?2-2+…+ 8?4+142-1+1??
?1-1?71?4n-2+14n-1+1?=8-n-1. ??4+1
3λ7则等式Tn+=,
5an+1871λ7即为-n1+=,
84-+15×4n-185
解得λ=5-n1. 4-+1
5
由λ是整数,得4n-1+1是5的因数.而当且仅当n=2时,n1是整数,由此λ=4.
4-+13λ7
综上所述,当且仅当λ=4时,存在正整数n=2,使等式Tn+=成立.
5an+18
相关推荐: