第一范文网 - 专业文章范例文档资料分享平台

2020年四川省达州市中考数学试卷-最新整理

来源:用户分享 时间:2025/5/18 13:20:29 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

①OA=BC=2;

②当点D运动到OA的中点处时,PC2+PD2=7; ③在运动过程中,∠CDP是一个定值; ④当△ODP为等腰三角形时,点D的坐标为(其中正确结论的个数是( )

,0).

A.1个

B.2个

C.3个

;故①正确;

D.4个

【分析】①根据矩形的性质即可得到OA=BC=2②由点D为OA的中点,得到OD=OA==22+(

)2=7,故②正确;

,根据勾股定理即可得到PC2+PD2=CD2=OC2+OD2

③如图,过点P作PF⊥OA于F,FP的延长线交BC于E,PE=a,则PF=EF﹣PE=2﹣a,根据三角函数的定义得到BE=形的性质得到FD=

PE=

a,求得CE=BC﹣BE=2

a=

(2﹣a),根据相似三角

,根据三角函数的定义得到∠PDC=60°,故③正确;

OC=

,Ⅱ、OP=OD,

④当△ODP为等腰三角形时,Ⅰ、OD=PD,解直角三角形得到OD=

根据等腰三角形的性质和四边形的内角和得到∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,根据等腰三角形的性质和四边形的内角和得到∠OCP=105°>90°,故不合题意舍去;于是得到当△ODP为等腰三角形时,点D的坐标为(【解答】解:①∵四边形OABC是矩形,B(2∴OA=BC=2

;故①正确;

,0).故④正确. ,2),

②∵点D为OA的中点, ∴OD=OA=

)2=7,故②正确;

∴PC2+PD2=CD2=OC2+OD2=22+(

③如图,过点P作PF⊥OA于F,FP的延长线交BC于E, ∴PE⊥BC,四边形OFEC是矩形, ∴EF=OC=2,

设PE=a,则PF=EF﹣PE=2﹣a,

11

在Rt△BEP中,tan∠CBO===,

∴BE=

PE=

a, ∴CE=BC﹣BE=2﹣

a=

(2﹣a),

∵PD⊥PC,

∴∠CPE+∠FPD=90°, ∵∠CPE+∠PCE=90°, ∴∠FPD=∠ECP, ∵∠CEP=∠PFD=90°, ∴△CEP∽△PFD, ∴=,

∴FD=

, ∴tan∠PDC===,

∴∠PDC=60°,故③正确; ④∵B(2,2),四边形OABC是矩形, ∴OA=2

,AB=2,

∵tan∠AOB=

∴∠AOB=30°,

当△ODP为等腰三角形时, Ⅰ、OD=PD,

∴∠DOP=∠DPO=30°, ∴∠ODP=60°, ∴∠ODC=60°, ∴OD=

OC=

Ⅱ、OP=OD,

∴∠ODP=∠OPD=75°, ∵∠COD=∠CPD=90°,

∴∠OCP=105°>90°,故不合题意舍去; Ⅲ、OP=PD,

12

∴∠POD=∠PDO=30°,

∴∠OCP=150°>90°故不合题意舍去, ∴当△ODP为等腰三角形时,点D的坐标为(故选:D.

,0).故④正确,

【点评】此题主要考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP和PD是解本题的关键.

二、填空题(每小题3分,共18分)

11.(3分)2018年,中国贸易进出口总额为4.62万亿美元(美国约为4.278万亿美元),同比增长12.6%,占全球贸易总额的11.75%,贸易总额连续两年全球第一!数据4.62万亿用科学记数法表示为 4.62×1012 .

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:4.62万亿=4.62×1012, 故答案为:4.62×1012

【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

12.(3分)如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为

【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.

【解答】解:因为随机闭合开关S1,S2,S3中的两个,有3种方法,其中有2种能够让灯泡发光 所以P(灯泡发光)=.

13

故本题答案为:.

【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.

13.(3分)如图所示,点C位于点A、B之间(不与A、B重合),点C表示1﹣2x,则x的取值范围是 ﹣<x<0 .

【分析】根据题意列出不等式组,求出解集即可确定出x的范围. 【解答】解:根据题意得:1<1﹣2x<2, 解得:﹣<x<0, 则x的范围是﹣<x<0, 故答案为:﹣<x<0

【点评】此题考查了解一元一次不等式组,以及数轴,熟练掌握运算法则是解本题的关键. 14.(3分)如图,?ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为 16 .

【分析】根据平行四边形的性质可得BO=DO=BD,进而可得OE是△ABC的中位线,由三角形中位线定理得出BC=2OE,再根据平行四边形的性质可得AB=CD,从而可得△BCD的周长=△BEO的周长×2.

【解答】解:∵?ABCD的对角线AC、BD相交于点O, ∴BO=DO=BD,BD=2OB, ∴O为BD中点, ∵点E是AB的中点, ∴AB=2BE,BC=2OE, ∵四边形ABCD是平行四边形, ∴AB=CD, ∴CD=2BE. ∵△BEO的周长为8,

14

∴OB+OE+BE=8,

∴BD+BC+CD=2OB+2OE+2BE=2(OB+OE+BE)=16, ∴△BCD的周长是16, 故答案为16.

【点评】此题考查了平行四边形的性质,三角形中位线定理以及线段中点的定义.关键是掌握平行四边形的性质:①边:平行四边形的对边平行且相等.②角:平行四边形的对角相等;③对角线:平行四边形的对角线互相平分.

15.(3分)如图,A、B两点在反比例函数y=

的图象上,C、D两点在反比例函数y=

的图象

上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=4,EF=3,则k2﹣k1= 4 .

【分析】设出A(a,出结果等于4. 【解答】解:设A(a,

),C(a,

),B(b,

),D(b,

),则

),C(a,

),B(b,

),D(b,

),由坐标转化线段长,从而可求

CA=∴

﹣=2, ,

得a=

同理:BD=又∵a﹣b=3 ∴

,得b=

=3

解得:k2﹣k1=4

【点评】本题考查反比例函数上点的坐标关系,根据坐标转化线段长是解题关键.

15

2020年四川省达州市中考数学试卷-最新整理.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c5k4212pm8h55mbv23rb17u3cm9b9nu004qk_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top