=
6k+1
-
3k+23k+43
2
2
2
k+1
18k+1=
3k+2=
3k+2
-29k+18k+8
3k+43k+323k+4
3k+3
>0,
所以当n=k+1时不等式也成立. 由①②知,对一切正整数n,都有所以正整数a的最大值为25. 方法二 设f(n)=
111++…+ n+1n+23n+11111
++- 3n+23n+33n+4n+1
23n+4
3n+3
>0,
11125++…+>, n+1n+23n+124
则f(n+1)-f(n)==
112
+-=3n+23n+43n+33n+2
∴数列{f(n)}为递增数列, 11126∴f(n)min=f(1)=++=,
23424∴
1111aaa26+++…+>对一切正整数n都成立可转化为 ∴a<26. 故正整数a的最大值为25. 17
相关推荐: