如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC, ?ABC=45°,AB=22,BC=2AE=4,三角形PAB是等腰三角形. (Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)求直线PB与平面PCD所成角的大小; (Ⅲ)求四棱锥P—ACDE的体积.
【解析】(Ⅰ)证明:因为?ABC=45°,AB=22,BC=4,所以在?ABC中,由余弦定理得:AC2=(22)2+42-2?22?4cos45?=8,解得AC=22,
所以AB2+AC2=8+8=16=BC2,即AB?AC,又PA⊥平面ABCDE,所以PA⊥AB, 又PA?AC?A,所以AB?平面PAC,又AB∥CD,所以CD?平面PAC,又因为
CD?平面PCD,所以平面PCD⊥平面PAC;
(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作AH?PC于H,则
AH?平面PCD,又AB∥CD,AB?平面PCD内,所以AB平行于平面PCD,所以点A
到平面PCD的距离等于点B到平面PCD的距离,过点B作BO⊥平面PCD于点O,则
?PBO为所求角,且AH=BO,又容易求得AH=2,所以sin?PBO=12,即?PBO=30?,
所以直线PB与平面PCD所成角的大小为30?;
(Ⅲ)由(Ⅰ)知CD?平面PAC,所以CD?AC,又AC∥ED,所以四边形ACDE是直角梯形,又容易求得DE?1(2?22)?22,AC=22,所以四边形ACDE的面积为
12?3,所以四棱锥P—ACDE的体积为?22?3=22。
3
(2010湖南理数)
欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@163.com
第 33 页 共 42 页
欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@163.com
第 34 页 共 42 页
欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@163.com
第 35 页 共 42 页
(2010湖北理数)18. (本小题满分12分)
。如图, 在四面体ABOC中, OC?OA,OC?OB,?AOB?120, 且OA?OB?OC?1
(Ⅰ)设为P为AC的中点, 证明: 在AB上存在一点Q,
ABAQ使PQ?OA,并计算的值;
(Ⅱ)求二面角O?AC?B的平面角的余弦值。
欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@163.com
第 36 页 共 42 页
相关推荐: