第一范文网 - 专业文章范例文档资料分享平台

高等数学总结辅导

来源:用户分享 时间:2025/6/2 18:37:22 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

若存在着x0点的一个邻域,对于这个邻域内任何点x(x0点除外), 则说

是函数

的一个极大值;

<均成立,

若存在着x0点的一个邻域,对于这个邻域内任何点x(x0点除外), 则说

是函数

的一个极小值.

>均成立,

函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。 我们知道了函数极值的定义了,怎样求函数的极值呢? 学习这个问题之前,我们再来学习一个概念——驻点 凡是使

的x点,称为函数

的驻点。

判断极值点存在的方法有两种:如下 方法一: 设函数

在x0点的邻域可导,且

.

>0,当x取x0右侧邻近值时,

<0,

情况一:若当x取x0左侧邻近值时, 则函数

在x0点取极大值。

<0,当x取x0右侧邻近值时,

>0,

情况一:若当x取x0左侧邻近值时, 则函数

在x0点取极小值。

注:此判定方法也适用于导数在x0点不存在的情况。 用方法一求极值的一般步骤是: a):求

b):求 c):判断

的全部的解——驻点;

在驻点两侧的变化规律,即可判断出函数的极值。

例题:求 解答:先求导数

再求出驻点:当

极值点

时,x=-2、1、-4/5

判定函数的极值,如下图所示

方法二:

设函数在x0点具有二阶导数,且

<0,函数

>0,函数

在x0点取极大值;

在x0点取极小值;

.

则:a):当 b):当 c):当

=0,其情形不一定,可由方法一来判定.

例题:我们仍以例1为例,以比较这两种方法的区别。

解答:上面我们已求出了此函数的驻点,下面我们再来求它的二阶导数。

,故此时的情形不确定,我们可由方法一来判定; <0,故此点为极大值点;

>0,故此点为极小值点。

函数的最大值、最小值及其应用

在工农业生产、工程技术及科学实验中,常会遇到这样一类问题:在一定条件下,怎样使\产品最多\、\用料最省\、\成本最低\等。

这类问题在数学上可归结为求某一函数的最大值、最小值的问题。

怎样求函数的最大值、最小值呢?前面我们已经知道了,函数的极值是局部的。要求在[a,b]

上的最大值、最小值时,可求出开区间(a,b)内全部的极值点,加上端点大值、最小值即为所求。

的值,从中取得最

例题:求函数 解答:

在此区间处处可导,

,在区间[-3,3/2]的最大值、最小值。

先来求函数的极值,故x=±1,

再来比较端点与极值点的函数值,取出最大值与最小值即为所求。

因为

故函数的最大值为

,,

,函数的最小值为

, 。

例题:圆柱形罐头,高度H与半径R应怎样配,使同样容积下材料最省?

解答:由题意可知:为一常数,

面积

故在V不变的条件下,改变R使S取最小值。

故:时,用料最省。

曲线的凹向与拐点

通过前面的学习,我们知道由一阶导数的正负,可以判定出函数的单调区间与极值,但是还不能进一步研究曲线的性态,为此我们还要了解曲线的凹性。 定义:

对区间I的曲线作切线,如果曲线弧在所有切线的下面,则称曲线在区间I下凹,如果曲

线在切线的上面,称曲线在区间I上凹。

曲线凹向的判定定理

定理一:设函数

导数 定理二:设函数

在区间(a,b)上可导,它对应曲线是向上凹(或向下凹)的充分必要条件是:

在区间(a,b)上是单调增(或单调减)。

在区间(a,b)上可导,并且具有一阶导数和二阶导数;那末:

>0,则<0,则

在[a,b]对应的曲线是下凹的; 在[a,b]对应的曲线是上凹的;

若在(a,b)内, 若在(a,b)内,

例题:判断函数的凹向

解答:我们根据定理二来判定。

因为,所以在函数的定义域(0,+∞)内,<0,

故函数所对应的曲线时下凹的。

拐点的定义

连续函数上,上凹弧与下凹弧的分界点称为此曲线上的拐点。

拐定的判定方法

如果在区间(a,b)内具有二阶导数,我们可按下列步骤来判定的拐点。

搜索更多关于: 高等数学总结辅导 的文档
高等数学总结辅导.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c5kpd67jl6d9lpyv24etm_9.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top