第一范文网 - 专业文章范例文档资料分享平台

中考数学压轴题归类复习(十大类型附详细解答)

来源:用户分享 时间:2025/5/22 5:58:22 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

四、三角形问题(等腰直角三角形、等边三角形、全等三角形等) 例4.(广东省湛江市)已知矩形纸片OABC的长为4,宽为3,以长OA所在的直线为x轴,O为坐标原点建立平面直角坐标系;点P是OA边上的动点(与点OA不重合),现将△POC沿PC翻折得到△PEC,再在AB边上选取适当的点D,将△PAD沿PD翻折,得到△PFD,使得直线PE、PF重合.

(1)若点E落在BC边上,如图①,求点P、C、D的坐标,并求过此三点的抛物线的函数关系式;

(2)若点E落在矩形纸片OABC的内部,如图②,设OP=x,AD=y,当x为何值时,y取得最大值

(3)在(1)的情况下,过点P、C、D三点的抛物线上是否存在点Q,使△PDQ是以PD为直角边的直角三角形若不存在,说明理由;若存在,求出点Q的坐标.

y y E B B C C F

E F F D D

O P A x O P A x 图① 图②

变式.(广东省深圳市)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).

(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式. (2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.

①当△BDE是等腰三角形时,直接写出此时点E的坐标. ....②又连接CD、CP(如图3),△CDP是否有最大面积若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.

y y

P C

E A B A B x x

O D

图2

苏州中考题:(2013年●29题)如图,已知抛物线y=x2+bx+c(b,c是常数,且c<0)与

x轴分别交于点A,B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).

(1)b= ,点B的横坐标为 (上述结果均用含c的代数式表示);

(2)连接BC,过点A作直线AE∥BC,与抛物线y=x2+bx+c交于点E.点D是x轴上一点,其坐标为(2,0),当C,D,E三点在同一直线上时,求抛物线的解析式;

(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB,PC,设所得△PBC的面积为S.

①求S的取值范围;

②若△PBC的面积S为整数,则这样的△PBC共有 个.

五、与四边形有关的二次函数问题

例5.(内蒙古赤峰市)如图,Rt△ABC的顶点坐标分别为A(0,),B(-,3),C(1,0),2∠ABC=90°,BC与y轴的交点为D,D点坐标为(0,

3),以点D为顶点、y轴为对称轴3的抛物线过点B.

(1)求该抛物线的解析式;

(2)将△ABC沿AC折叠后得到点B的对应点B′,求证:四边形AOCB′是矩形,并判断点B′是否在(1)的抛物线上;

(3)延长BA交抛物线于点E,在线段BE上取一点P,过P点作x轴的垂线,交抛物线于点F,是否存在这样的点P,使四边形PADF是平行四边形若存在,求出点P的坐标,若不存在,说明理由.

B′

D

C

变式练习:(2011年苏州28题)已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD. (1)如图①,当PA的长度等于 时,∠PAB=60°;

中考数学压轴题归类复习(十大类型附详细解答).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c5kr1f0sooa8qp2012imx4yj364q3d4011m3_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top