Page 13 of 123 高中高三第一轮复习练习试题
1.设偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系为________.
解析:由f(x)为偶函数,知b=0,∴f(x)=loga|x|,又f(x)在(-∞,0)上单调递增,所以0f(b+2).答案:f(a+1)>f(b+2) 2.(2010年广东三校模拟)定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)等于________.
解析:f(x)为奇函数,且x∈R,所以f(0)=0,由周期为2可知,f(4)=0,f(7)=f(1),又由f(x+2)=f(x),令x=-1得f(1)=f(-1)=-f(1)?f(1)=0,所以f(1)+f(4)+f(7)=0.答案:0
3.(2009年高考山东卷改编)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则f(-25)、f(11)、f(80)的大小关系为________.
解析:因为f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3),又因为f(x)在R上是奇函数,f(0)=0,得f(80)=f(0)=0,f(-25)=f(-1)=-f(1),而由f(x-4)=-f(x)得f(11)=f(3)=-f(-3)=-f(1-4)=f(1),又因为f(x)在区间[0,2]上是增函数,所以f(1)>f(0)=0,所以-f(1)<0,即f(-25) 答案:f(-25) 1 4.(2009年高考辽宁卷改编)已知偶函数f(x)在区间[0,+∞)上单调增加,则满足f(2x-1) 3围是________. 1112 解析:由于f(x)是偶函数,故f(x)=f(|x|),由f(|2x-1|) 3333 12 答案:(,) 335.(原创题)已知定义在R上的函数f(x)是偶函数,对x∈R,f(2+x)=f(2-x),当f(-3)=-2时,f(2011)的值为________. 解析:因为定义在R上的函数f(x)是偶函数,所以f(2+x)=f(2-x)=f(x-2),故函数f(x)是以4为周期的函数,所以f(2011)=f(3+502×4)=f(3)=f(-3)=-2.答案:-2 6.已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数,又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.(1)证明:f(1)+f(4)=0;(2)求y=f(x),x∈[1,4]的解析式;(3)求y=f(x)在[4,9]上的解析式. 解:(1)证明:∵f(x)是以5为周期的周期函数,∴f(4)=f(4-5)=f(-1), 又∵y=f(x)(-1≤x≤1)是奇函数,∴f(1)=-f(-1)=-f(4),∴f(1)+f(4)=0. (2)当x∈[1,4]时,由题意可设f(x)=a(x-2)2-5(a>0),由f(1)+f(4)=0,得a(1-2)2-5+a(4-2)2-5=0,∴a=2,∴f(x)=2(x-2)2-5(1≤x≤4). (3)∵y=f(x)(-1≤x≤1)是奇函数,∴f(0)=0,又知y=f(x)在[0,1]上是一次函数,∴可设f(x)=kx(0≤x≤1),而f(1)=2(1-2)2-5=-3,∴k=-3,∴当0≤x≤1时,f(x)=-3x,从而当-1≤x<0时,f(x)=-f(-x)=-3x,故-1≤x≤1时,f(x)=-3x.∴当4≤x≤6时,有-1≤x-5≤1,∴f(x)=f(x-5)=-3(x-5)=-3x+15.当6 ??-3x+15, 4≤x≤6 ∴f(x)=?. 2 ?2(x-7)-5, 6 B组 1.(2009年高考全国卷Ⅰ改编)函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则下列结论正确的是________. ①f(x)是偶函数 ②f(x)是奇函数 ③f(x)=f(x+2) ④f(x+3)是奇函数 解析:∵f(x+1)与f(x-1)都是奇函数,∴f(-x+1)=-f(x+1),f(-x-1)=-f(x-1),∴函数f(x)关于点(1,0),及点(-1,0)对称,函数f(x)是周期T=2[1-(-1)]=4的周期函数.∴f(-x-1+4)=-f(x-1+4), 13 f(-x+3)=-f(x+3),即f(x+3)是奇函数.答案:④ 3 2.已知定义在R上的函数f(x)满足f(x)=-f(x+),且f(-2)=f(-1)=-1,f(0)=2,f(1)+f(2)+?+f(2009) 2+f(2010)=________. 3 解析:f(x)=-f(x+)?f(x+3)=f(x),即周期为3,由f(-2)=f(-1)=-1,f(0)=2,所以f(1)=-1, 2f(2)=-1,f(3)=2,所以f(1)+f(2)+?+f(2009)+f(2010)=f(2008)+f(2009)+f(2010)=f(1)+f(2)+f(3)=0.答案:0 3.(2010年浙江台州模拟)已知f(x)是定义在R上的奇函数,且f(1)=1,若将f(x)的图象向右平移一个单位后,得到一个偶函数的图象,则f(1)+f(2)+f(3)+?+f(2010)=________. 解析:f(x)是定义在R上的奇函数,所以f(-x)=-f(x),将f(x)的图象向右平移一个单位后,得到一个偶函数的图象,则满足f(-2+x)=-f(x),即f(x+2)=-f(x),所以周期为4,f(1)=1,f(2)=f(0)=0,f(3)=-f(1)=-1,f(4)=0,所以f(1)+f(2)+f(3)+f(4)=0,则f(1)+f(2)+f(3)+?+f(2010)=f(4)×502+f(2)=0.答案:0 4.(2010年湖南郴州质检)已知函数f(x)是R上的偶函数,且在(0,+∞)上有f′(x)>0,若f(-1)=0,那么关于x的不等式xf(x)<0的解集是________. 解析:在(0,+∞)上有f′(x)>0,则在(0,+∞)上f(x)是增函数,在(-∞,0)上是减函数,又f(x)在R上是偶函数,且f(-1)=0,∴f(1)=0.从而可知x∈(-∞,-1)时,f(x)>0;x∈(-1,0)时,f(x)<0;x∈(0,1)时,f(x)<0;x∈(1,+∞)时,f(x)>0.∴不等式的解集为(-∞,-1)∪(0,1)答案:(-∞,-1)∪(0,1). 5.(2009年高考江西卷改编)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2009)+f(2010)的值为________. 解析:∵f(x)是偶函数,∴f(-2009)=f(2009).∵f(x)在x≥0时f(x+2)=f(x),∴f(x)周期为2.∴f(-2009)+f(2010)=f(2009)+f(2010)=f(1)+f(0)=log22+log21=0+1=1.答案:1 16.(2010年江苏苏州模拟)已知函数f(x)是偶函数,并且对于定义域内任意的x,满足f(x+2)=-,若当f(x)2 解析:由f(x+2)=-,可得f(x+4)=f(x),f(2009.5)=f(502×4+1.5)=f(1.5)=f(-2.5)∵f(x)是偶函 f(x)55 数,∴f(2009.5)=f(2.5)=.答案: 227.(2010年安徽黄山质检)定义在R上的函数f(x)在(-∞,a]上是增函数,函数y=f(x+a)是偶函数,当x1 x2>a,且|x1-a|<|x2-a|时,则f(2a-x1)与f(x2)的大小关系为________. 解析:∵y=f(x+a)为偶函数,∴y=f(x+a)的图象关于y轴对称,∴y=f(x)的图象关于x=a对称.又∵f(x)在(-∞,a]上是增函数,∴f(x)在[a,+∞)上是减函数.当x1a,且|x1-a|<|x2-a|时,有a-x1 8.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=-2,则实数a=________. 解析:当x≥0时,f(x)=x(x+1)>0,由f(x)为奇函数知x<0时,f(x)<0,∴a<0,f(-a)=2,∴-a(-a+1)=2,∴a=2(舍)或a=-1.答案:-1 9.(2009年高考山东卷)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=________. 解析:因为定义在R上的奇函数,满足f(x-4)=-f(x),所以f(4-x)=f(x),因此,函数图象关于直线x=2对称且f(0)=0.由f(x-4)=-f(x)知f(x-8)=f(x),所以函数是以8为周期的周期函数.又因为f(x)在区间[0,2]上是增函数,所以f(x)在区间[-2,0]上也是增函数,如图所示,那么方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1<x2<x3<x4.由对称性知x1+x2=-12,x3+x4=4,所以x1+x2+x3+x4=-12+4=-8. 答案:-8 Page 15 of 123 高中高三第一轮复习练习试题 10.已知f(x)是R上的奇函数,且当x∈(-∞,0)时,f(x)=-xlg(2-x),求f(x)的解析式. 解:∵f(x)是奇函数,可得f(0)=-f(0),∴f(0)=0.当x>0时,-x<0,由已知f(-x)=xlg(2+x),∴-f(x)=xlg(2+x),即f(x)=-xlg(2+x) (x>0). ??-xlg(2-x) (x<0), ∴f(x)=?即f(x)=-xlg(2+|x|)(x∈R). ?-xlg(2+x) (x≥0).? 11.已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).(1)求证:f(x)是奇函数;(2)如果x∈R,f(x)<0,1 并且f(1)=-,试求f(x)在区间[-2,6]上的最值. 2解:(1)证明:∴函数定义域为R,其定义域关于原点对称. ∵f(x+y)=f(x)+f(y),令y=-x,∴f(0)=f(x)+f(-x).令x=y=0,∴f(0)=f(0)+f(0),得f(0)=0.∴f(x)+f(-x)=0,得f(-x)=-f(x),∴f(x)为奇函数. + (2)法一:设x,y∈R,∵f(x+y)=f(x)+f(y),∴f(x+y)-f(x)=f(y). + ∵x∈R,f(x)<0,∴f(x+y)-f(x)<0,∴f(x+y) 1 为奇函数,f(0)=0,∴f(x)在(-∞,+∞)上是减函数.∴f(-2)为最大值,f(6)为最小值.∵f(1)=-,∴f(- 22)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.∴所求f(x)在区间[-2,6]上的最大值为1,最小值为-3. 法二:设x1 1 -x1)<0.∴f(x2)-f(x1)<0.即f(x)在R上单调递减.∴f(-2)为最大值,f(6)为最小值.∵f(1)=-,∴f(-2) 2=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.∴所求f(x)在区间[-2,6]上的最大值为1,最小值为-3. 12.已知函数f(x)的定义域为R,且满足f(x+2)=-f(x). (1)求证:f(x)是周期函数; 11 (2)若f(x)为奇函数,且当0≤x≤1时,f(x)=x,求使f(x)=-在[0,2010]上的所有x的个数. 22解:(1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x), ∴f(x)是以4为周期的周期函数. 1 (2)当0≤x≤1时,f(x)=x, 2 111 设-1≤x≤0,则0≤-x≤1,∴f(-x)=(-x)=-x.∵f(x)是奇函数,∴f(-x)=-f(x),∴-f(x)=-222 11 x,即f(x)=x.故f(x)=x(-1≤x≤1) 22 1 又设1 2 11 又∵f(x-2)=-f(2-x)=-f[(-x)+2]=-[-f(-x)]=-f(x),∴-f(x)=(x-2),∴f(x)=-(x- 22 1 x (-1≤x≤1)2 2)(1 1 -(x-2) (1 11 由f(x)=-,解得x=-1.∵f(x)是以4为周期的周期函数.故f(x)=-的所有x=4n-1(n∈Z).令0≤4n 22 + ??? 15 131 -1≤2010,则≤n≤502,又∵n∈Z,∴1≤n≤502(n∈Z),∴在[0,2010]上共有502个x使f(x)=-. 442 第三章 指数函数和对数函数 第一节 指数函数 A组 -- 1.(2010年黑龙江哈尔滨模拟)若a>1,b<0,且a+ab=22,则ab-ab的值等于________. ----- 解析:∵a>1,b<0,∴0 -- =a2b+a2b-2=4,∴ab-ab=-2.答案:-2 2.已知f(x)=ax+b的图象如图所示,则f(3)=________. 解析:由图象知f(0)=1+b=-2,∴b=-3.又f(2)=a2-3=0,∴a=3,则f(3)=(3)3-3=33-3. 答案:33-3 1-2 3.函数y=()2xx的值域是________. 2 b 解析:∵2x-x2=-(x-1)2+1≤1, 1-211 ∴()2xx≥.答案:[,+∞) 222 4.(2009年高考山东卷)若函数f(x)=ax-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围是________. 解析:函数f(x)的零点的个数就是函数y=ax与函数y=x+a交点的个数,由函数的图象可知a>1时两函数图象有两个交点,01. 答案:(1,+∞) 5.(原创题)若函数f(x)=a-1(a>0,a≠1)的定义域和值域都是[0,2],则实数a等于________. ?01 x ?2?0a-1=0解析:由题意知?无解或?a-1=0?a=3.答案:3 ???a0-1=2?a2-1=2 -2x+b 6.已知定义域为R的函数f(x)=x+1是奇函数.(1)求a,b的值; 2+a(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围. -1+b 解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1. 2+a 1-+1x 2-2+1-2+1 从而有f(x)=x+1.又由f(1)=-f(-1)知=-,解得a=2. 2+a4+a1+a -2x+111 (2)法一:由(1)知f(x)=x+1=-+x, 22+12+2 由上式易知f(x)在R上为减函数,又因f(x)是奇函数,从而不等式f(t2-2t)+f(2t2-k)<0?f(t2-2t)<-f(2t2 -k)=f(-2t2+k). 因f(x)是R上的减函数,由上式推得t2-2t>-2t2+k. 1 即对一切t∈R有3t2-2t-k>0,从而Δ=4+12k<0,解得k<-. 3
相关推荐: