第一范文网 - 专业文章范例文档资料分享平台

高中竞赛之重要不等式 

来源:用户分享 时间:2025/9/11 23:21:17 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

v1.0 可编辑可修改 高中竞赛之重要不等式

1.柯西不等式(给了两列数,或一列数,有平方和和平方) 定理1 对任意实数组ai,bi(i?1,2,即

,n)恒有不等式“积和方不大于方和积”,

等式当且仅当 时成立。本不等式称为柯西不等式。

证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。 证明1

n

左=?ai2bi2?2?aibiajbj ∴右-左=

i?1i?j

当且仅当 时,等式成立。

柯西不等式的两个推论: ⅰ.设

同号(

),则

时取等号。

1第 1 页 共 18 页

当且仅当

v1.0 可编辑可修改 ⅱ.若 ,且 ,则

(分母作和)

由柯西不等式可以证下面的不等式。3次可以推广为4、5等n次。

(a13+a23+a33)(b13+b23+b33)(c13+c23+c33)?(a1b1c1+a2b2c2+a3b3c3)3

3333333333证明:对(a1+a2+a3)(b1+b2+b3)和(c1+c2+c3)(a1b1c1+a2b2c2+a3b3c3)

分别用柯西不等式,可得到两个不等式,将这两个不等式相乘,再用一次柯西不等式即可证明原不等式.

柯西不等式的推广:闵可夫斯基不等式 设

,…,

; ,

,…,

是两组正数,k?0且k?1 ,则

( )

a1a2??b1b2 (

an 时等号成立。 bn )

当且仅当? 闵可夫斯基不等式是用某种长度度量下的三角形不等式,当时得平面上的三角形不等式:

2第 2 页 共 18 页

v1.0 可编辑可修改

右图给出了对上式的一个直观理解。

若记 , ,则上式为

特例:

(a1?a2?2121?am)2?(b1?b2?222?bm)2?2

a?b?a2?b2?(a1?a2?2121?am?bm?am)2?(b1?b2?21222?bm)2?(c1?c2??am?bm?cm22?cm)2?2

a?b?c?a2?b2?c2?多个根式可转化为一个根式。 赫尔德不等式 已知

)是

个正实数, ,则

3第 3 页 共 18 页

v1.0 可编辑可修改 上式中若令????等式。

1 ,2 , ,则此赫尔德不等式即为柯西不

2〔排序不等式,排序原理〕(给的是两列数且为对称的)

设a1?a2???an,b1?b2???bn,则有

?abi?1nin?1?i??aibti??aibi.

i?1i?1nn1,2,?,n?.当且即“反序和”?“乱序和”?“同序和”.其中?t1,t2,?,tn???仅当a1?a2???an或b1?b2???bn时等号成立. 〔切比雪夫不等式〕

实数ai,bi满足a1?a2???an,b1?b2???bn(i?1,2,…,n).则

1n?1n??1n?1naibi???ai???bi???aibn?1?i. ?ni?1?ni?1??ni?1?ni?1当且仅当a1?a2???an或b1?b2???bn时等号成立. 下面给出一个

时的契比雪夫不等式的直观理解。

如图,矩形OPAQ中, , ,

显然阴影部分的矩形的面积之和不小于空白部分的矩形的面积之和,(这可沿图中线段MN向上翻折比较即知)。于是有

4第 4 页 共 18 页

v1.0 可编辑可修改 ,也即

3 琴生不等式 〔凸函数定义〕

1.设f?x?是定义在闭区间?a,b?上的函数,若对任意x,y??a,b?和任意

???0,1?,有f??x??1???y???f?x???1???f?y?

成立,则称f?x?是?a,b?上的凸函数(也称下凸函数或凹函数).

2.设f?x?是定义在?a,b?上的函数,若对任意x,y??a,b?且x?y和任意???0,1?,有f??x??1???y???f?x???1???f?y? 成立,则称f?x?是?a,b?上的严格凸函数.

3.设f?x?是定义在?a,b?上的函数,若对任意x,y??a,b?和任意???0,1?,有f??x??1???y???f?x???1???f?y? 成立,则称f?x?是?a,b?上的上凸函数.

凸函数的定义表明了,上(下)凸函数的两个自变量的算术平均值处的函数值不小(大)于其函数值的算术平均值.从图象上看,表明联结上(下)凸函数图形上任何两点的弦的中点恒位于图形的对应点之下(上).见图1.

5第 5 页 共 18 页

搜索更多关于: 高中竞赛之重要不等式  的文档
高中竞赛之重要不等式 .doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c5lf5s5ww49371qz5d0ci05ej21u0rq00k2u_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top