第一范文网 - 专业文章范例文档资料分享平台

2017年中考数学专题复习三:方程与函数

来源:用户分享 时间:2025/5/17 22:42:17 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

【参考答案】

类型一:一次方程为主的应用题

【例题1】(2016·江西·8分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.

(1)请直接写出第5节套管的长度;

(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.

【考点】一元一次方程的应用.

【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n﹣1)”,代入数据即可得出结论;

(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.

【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm). (2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm), 设每相邻两节套管间重叠的长度为xcm, 根据题意得:(50+46+42+?+14)﹣9x=311, 即:320﹣9x=311, 解得:x=1.

答:每相邻两节套管间重叠的长度为1cm. 【同步练】

(2016海南)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.

【考点】一元一次方程的应用.

【分析】设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元.根据“购书价格=《汉语成语大词典》的标价×折率+《中华上下五千年》的标价×折率”可列出关于x的一元一次方程,解方程即可得出结论.

【解答】解:设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,

依题意得:50%x+60%(150﹣x)=80, 解得:x=100, 150﹣100=50(元).

答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元. 【点评】本题考查了一元一次方程的应用,解题的关键是列出50%x+60%(150﹣x)=80.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.

类型二:二次方程为主的应用题

【例题2】(2016·青海西宁·10分)青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.

(1)请问每个站点的造价和公共自行车的单价分别是多少万元?

(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率. 【考点】一元二次方程的应用;二元一次方程组的应用.

【分析】(1)分别利用投资了112万元,建成40个公共自行车站点、配置720辆公共自行车以及投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车进而得出等式求出答案;

(2)利用2016年配置720辆公共自行车,结合增长率为x,进而表示出2018年配置公共自行车数量,得出等式求出答案.

【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:

解得:

答:每个站点造价为1万元,自行车单价为0.1万元.

(2)设2016年到2018年市政府配置公共自行车数量的年平均增长率为a. 根据题意可得:720(1+a)=2205 解此方程:(1+a)=即:

2

2

(不符合题意,舍去)

答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%. 【同步练】

(2016·广西百色·10分)在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m.

(1)求这地面矩形的长;

(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?

【考点】一元二次方程的应用.

【分析】(1)根据题意表示出长方形的长,进而利用长×宽=面积,求出即可; (2)分别计算出每一规格的地板砖所需的费用,然后比较即可. 【解答】(1)设这地面矩形的长是xm,则依题意得: x(20﹣x)=96,

解得x1=12,x2=8(舍去), 答:这地面矩形的长是12米;

(2)规格为0.80×0.80所需的费用:96×(0.80×0.80)×55=8250(元).

2

规格为1.00×1.00所需的费用:96×(1.00×1.00)×80=7680(元). 因为8250<7680,

所以采用规格为1.00×1.00所需的费用较少. 类型三:分式方程为主的应用题

【例题3】(2016·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同

(1)求甲、乙两种救灾物品每件的价格各是多少元?

(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?

【考点】分式方程的应用;一元一次方程的应用.

【分析】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同

列出方程,求解即可;

(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据该爱心组织按照此需求的比例购买这2000件物品列出方程,求解即可.

【解答】解:(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元, 根据题意得, 350x?10解得:x=60.

经检验,x=60是原方程的解.

答:甲、乙两种救灾物品每件的价格各是70元、60元;

(2)设甲种物品件数为m件,则乙种物品件数为3m件, 根据题意得,m+3m=2000, 解得m=500,

即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元).

答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.

?300x

2017年中考数学专题复习三:方程与函数.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c5mipd752oi4mn0g1mmp04oweh0q68m00ohx_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top