解析:(1)由∴数列分 ∴∴
an?2?an?1?an?1?an?2可得:
?an?1?an?为等差数列,且首项 a1?a0?2?0?2,公差为2 ????3
????4分
an?an?1??a1?a0??2?n?1??2?2?n?1??2nan?a1??a2?a1???a3?a2?????an?an?1??2?4?6???2n??6分
n(2?2n)?n(n?1)2?111?11?????(n?2)an(n?1)(n?1)2n(n?1)(n?1)(n?2)?? ????n(2)由(1)可知:
7分
Tn?∴
1111?????3a14a25a3(n?2)an
?1?111111???(?)?(?)???(?)?2?1?22?32?33?4n?(n?1)(n?1)?(n?2)?
?11?1111???????2?1?2(n?1)?(n?2)??42(n?1)?(n?2)4 ????10分
易
知
:
Tn在
n?N?时,单调递增,∴
Tn?T1?
16 ????11分
∴
11?Tn?64 ????12分
19. (江西省“八校”2011年4月高三联合考试文科)(本小题满分12分)
2n?1anan?1?nan?a?1n?N?). ?a?21n数列满足,(
?2n???a(Ⅰ)证明:数列?n?是等差数列;
(Ⅱ)求数列(Ⅲ)设
?an?的通项公式an;
bn?n(n?1)an,求数列?bn?的前n项和Sn.
- 5 -
an?1an2n?12n2n?12n???1??1n?1n2a?2aaaannn19.(Ⅰ)由已知可得,即n?1,即n?1
?2n???a ∴ 数列?n?是公差为1的等差数列 ????????5分
n2n22??(n?1)?1?n?1an?aan?1 ?????????8分 1(Ⅱ)由(Ⅰ)知n,∴
nb?n?2n(Ⅲ)由(Ⅱ)知
Sn?1?2?2?22?3?23???n?2n
2Sn? 1?22?2?23???(n?1)?2n?n?2n?1 ??????10分
?Sn?2?2?2???2?n?223nn?1相减得:
2(1?2n)??n?2n?11?2
?2n?1?2?n?2n?1 ??????????12分
n?1S?(n?1)?2?2 ????? n∴
21. (江西省九江市六校2011年4月高三第三次联考文科)(本题满分14分)
33332*S{a}a?a?a???a?Sn?Nn123nn设数列的各项都是正数,且对任意,都有,其中n为
数列
{an}的前n项和.
2a?2Sn?an; n (Ⅰ)求证:
(Ⅱ)求数列
{an}的通项公式;
annn?1*b?3?(?1)???2(Ⅲ)设n(?为非零整数,n?N),试确定?的值,使得对任意
n?N*,都有bn?1?bn成立.
322a?0,∴a1?1 a?S?an?111121.解:(Ⅰ)由已知得,当时,,又∵n3332a?a???a?Sn?212nn当时,????① 3332a1?a2???an?1?Sn?1????????②
322a?S?Snnn?1?(Sn?Sn?1)(Sn?Sn?1)?an(Sn?Sn?1) 由①-②得,
2a?Sn?Sn?1?2Sn?an(n?2) n∴
- 6 -
显然当n?1时,a1?1适合上式。
2*a?2S?a(n?N) ????????????4分 nnn故
2a?2Sn?an?????③ n(Ⅱ)由(I)得,
2an?1?2Sn?1?an?1(n?2)??????④
22a?ann?1?2Sn?2Sn?1?an?an?1?an?an?1 由③-④得,
∵
an?an?1?0 ∴an?an?1?1(n?2)
{an}是首项为1,公差为1的等差数列。
故数列
*a?n(n?N) ??????????8分 n∴
*nn?1na?n(n?N)b?3?(?1)??2nn(III)∵,∴
n?1nnn?1n?1nnn?1nb?b?3?3?(?1)??2?(?1)??2?2?3?3??(?1)?2n∴n?1
21. (江西省新余市2011年高三第二次模拟理科)(本小题满分14分)
已知在数列
?an?中,
a1?122,Sn是其前n项和,且Sn?nan?n(n?1).
- 7 -
?n?1?Sn??n?是等差数列; (1)证明:数列?(2)令
bn?(n?1)(1?an),记数列?bn?的前n项和为Tn.
Tn?2(2①求证:当n?2时,
TT2T3????n)23n;
41?52n?1.
②)求证:当n?2时,
bn?1?bn?2???b2n?222S?n(S?S)?n(n?1)(n?1)S?nS?n(n?1) nn?1n21、解:由条件可得n,
n?1nSn?Sn?1?1n(n?1)nn?1两边同除以,得:
?n?1?Sn???成等差数列,且首项和公差均为1………………4分 所以:数列?n1n?1n2a?1?Sn?nSn?2nS?na?n(n?1)n(n?1),nnnn?1(2)由(1)可得:,,代入可得
bn?1111Tn?1?????n,23n.………………………6分
所以
①
bn?111bn?Tn?Tn?1?,即Tn??Tn?1n 当n?2时,nn
2平方则
Tn?2Tn2T11222?2?Tn?1?Tn?Tn?1?n?2nnnn
TT2T3111????n)?(2?2???2)23n23n
叠加得
2Tn?1?2(2?Tn?2(TT2T311????n)?1?(2???2)23n2n
111111?????????2(n?1)n 32n21?22?3 又21? =
111111???????1??1223n?1nn
- 8 -
相关推荐: