2008年全国统一高考数学试卷(理科)(全国卷Ⅱ)
一、选择题(共12小题,每小题5分,满分60分)
1.(5分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=( ) A.{0,1} B.{﹣1,0,1}
C.{0,1,2} D.{﹣1,0,1,2}
2.(5分)设a,b∈R且b≠0,若复数(a+bi)3是实数,则( ) A.b2=3a2 B.a2=3b2 C.b2=9a2 D.a2=9b2 3.(5分)函数f(x)=﹣x的图象关于( ) A.y轴对称
B.直线y=﹣x对称 C.坐标原点对称 D.直线y=x对称
4.(5分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则( ) A.a<b<c B.c<a<b C.b<a<c D.b<c<a 5.(5分)设变量x,y满足约束条件:
,则z=x﹣3y的最小值( )
A.﹣2 B.﹣4 C.﹣6 D.﹣8
6.(5分)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A.
B.
C.
D.
7.(5分)(1﹣
)6(1+
)4的展开式中x的系数是( )
A.﹣4 B.﹣3 C.3 D.4
8.(5分)若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M,N两点,则|MN|的最大值为( ) A.1
B.
C.
D.2
的离心率e的取值范围是( )
C.(2,5) D.
9.(5分)设a>1,则双曲线A.
B.
10.(5分)已知正四棱锥S﹣ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE、SD所成的角的余弦值为( )
A. B. C. D.
11.(5分)等腰三角形两腰所在直线的方程分别为x+y﹣2=0与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A.3
B.2
C.
D.
12.(5分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于( ) A.1
二、填空题(共4小题,每小题5分,满分20分) 13.(5分)设向量线,则λ= .
14.(5分)设曲线y=eax在点(0,1)处的切线与直线x+2y+1=0垂直,则a= . 15.(5分)已知F是抛物线C:y2=4x的焦点,过F且斜率为1的直线交C于A,B两点.设|FA|>|FB|,则|FA|与|FB|的比值等于 .
16.(5分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件① ; 充要条件② .
(写出你认为正确的两个充要条件)
三、解答题(共6小题,满分70分) 17.(10分)在△ABC中,cosB=﹣(1)求sinA的值
(2)设△ABC的面积S△ABC=
,求BC的长.
,cosC=. ,若向量
与向量
共
B.
C.
D.2
18.(12分)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1﹣0.999
.
(Ⅰ)求一投保人在一年度内出险的概率p;
(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).
19.(12分)如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.
(Ⅰ)证明:A1C⊥平面BED; (Ⅱ)求二面角A1﹣DE﹣B的大小.
20.(12分)设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.由 (Ⅰ)设bn=Sn﹣3n,求数列{bn}的通项公式; (Ⅱ)若an+1≥an,n∈N*,求a的取值范围.
21.(12分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点. (Ⅰ)若
,求k的值;
(Ⅱ)求四边形AEBF面积的最大值. 22.(12分)设函数
(Ⅰ)求f(x)的单调区间;
(Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围.
.
相关推荐: