学 号 14121401576
Hunan Institute of Science and Technology
本科毕业论文
题目:关于不定积分解题思路的探讨
作 者 何 宇 届 别 2017 系 别 数学学院 专 业 数学与应用数学 指导教师 罗德仁 职 称 讲 师 完成时间 2017年5月
关于不定积分解题思路的探讨
On the resolving idea of indefinite integral
专 业:
数学与应用数学
作 者: 何宇
指导老师:
罗德仁
湖南理工学院数学学院 二○一七年五月 岳阳
湖南理工学院 本科毕业论文
摘 要
不定积分是求定积分的基础, 在一元微积分学中占有重要地位. 学好不定积分, 对于导数和微分学中其他相关知识的巩固很有帮助. 求解不定积分常用的方法主要有: 基本公式法, 换元积分法, 分部积分法, 有理函数的积分法. 如何快速找到解题的突破口, 灵活使用各类方法是关键.
我们从被积函数的特点出发, 从易到难, 对不定积分进行多角度的观察和分析, 比较各类积分法, 发现和总结规律, 提高不定积分解题能力.
关键词: 不定积分; 基本公式法; 换元积分法; 分部积分法; 有理函数的积分法
I
湖南理工学院 本科毕业论文
Abstract
Indefinite integral is the foundation of definite integral, it occupies an important position in unitary differential calculus. Grasp the solving methods of indefinite integral is helping to derivative and other relevant knowledge. Several methods of solving indefinite integral are frequently used, such as basic formula method, change the variable, integration by parts, primitives of rational functions. What matters is how to quickly find the ideas of subject and flexibly use various method.
We observed and analysised the indefinite integral multi-angle, on the characteristics of integrand, from simple to difficult, compare various methods, sum up the laws, improve solving ability of the indefinite integral problem .
Keywords:indefinite integral; basic formula method; change the variable; integration by parts;integration by parts primitives of rational functions
II
相关推荐: