(5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本。
(6) 当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小. (7)我们称每个对象出现的次数为频数。而每个对象出现的次数与总次数的比值为频率。 数据波动的统计量:极差:指一组数据中最大数据与最小数据的差。方差:是各个数据与平均数之差的平方的平均数。标准差:方差的算术平方根。识记其计算公式。一组数据的极差,方差或标准差越小,这组数据就越稳定。还要知平均数,众数,中位数的定义。
刻画平均水平用:平均数,众数,中位数。 刻画离散程度用:极差,方差,标准差。 常考知识点:1、作频数分布表,作频数分布直方图。2、利用方差比较数据的稳定性。3、平均数,中位数,众数,极差,方差,标准差的求法。3、频率,样本的定义
第六章 证明
一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子。一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。 二、三角形内角和定理:三角形三个内角的和等于180度。 1、证明三角形内角和定理的思路是将原三角形中的三个角“凑”到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角。 2、三角形的外角与它相邻的内角是互为补角. 三、三角形的外角与它不相邻的内角关系是:
(1)三角形的一个外角等于和它不相邻的两个内角的和. (2)三角形的一个外角大于任何一个和它不相邻的内角. 四、证明一个命题是真命题的基本步骤是: (1)根据题意,画出图形.
(2)根据条件、结论,结合图形,写出已知、求证.
(3)经过分析,找出由已知推出求证的途径,写出证明过程. 在证明时需注意:
(1)在一般情况下,分析的过程不要求写出来. (2)证明中的每一步推理都要有根据. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行。30。所对的直角边是斜边的一半。斜边上的高是斜边的一半。 常考知识点:
1、三角形的内角和定理,及三角形外角定理。
2、两直线平行的性质及判定。命题及其条件和结论,真假命题的定义。
北师大版初中数学定理知识点汇总[九年级(上册)
第一章 证明(二)
※等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。 ※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的
直角三角形,其中一个锐角等于30o,这它所对的直角边必然等于斜边的一半。 ※有一个角等于60o的等腰三角形是等边三角形。
17
※如果知道一个三角形为直角三角形首先要想的定理有:
①勾股定理:(注意区分斜边与直角边)
②在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半 ③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现) ※垂直平分线是垂直于一条线段并且平分这条线段的直线。(注意着重号的意义) .........<直线与射线有垂线,但无垂直平分线>
※线段垂直平分线上的点到这一条线段两个端点距离相等。
※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
18
※三角形的三边的垂直平分线交于一点,并
且这个点到三个顶点的距离相等。(如图1所示,AO=BO=CO) ※角平分线上的点到角两边的距离相等。
※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。 角平分线是到角的两边距离相等的所有点的集合。
※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。 (如图2所示,OD=OE=OF)
第二章 一元二次方程
19
※只含有一个未知数的整式方程,且都可以化为
(a、b、c为
常数,a≠0)的形式,这样的方程叫一元二次方程。 ......
※把(a、b、c为常数,a≠0)称为一元二
次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。
20
相关推荐: