在Rt?PBC中,PC?PB2?BC2?16?4?25,
且PB?BC?PC?BD?4?2?25?BD?BD?45. 545BD5?5?因此在Rt?PBD中,得sin?BPD?, PB45故直线PB与平面PAC所成角的正弦值为5. 5
19.解:(1)由题意,可知x?1?1?2?3?5?6?7??4, 6y?61?15?13?12?10?9?7??11. 6??x?x??y?y????3??4???2??2???1??1?1???1??2???2??3???4?=?34,
iii?16??i?1xi?x?2???3????2????1??12?22?32?28,
222所以b????x?x??y?y?iii?16??i?1?6xi?x?2??3417??, 2814所以a?y?bx?11??17111?4?, 147?故该葡萄每株收获量y关于它“相近”葡萄的株数x的线性回归方程为y??17111x?. 147y的方差为
s2?1?2222215?11???13?11???12?11???10?11???9?11?2??7?11???7. ??6?171111711194x??,可知当x?2时,y???2?, 147147794?10?1000?10000?13.43(万元). 7(2)由y??因此总收入为
(3)由题知,x?2,3,4.
由(1)(2),知当x?2时,y?13.42,所以y?13;
当x?3时,y??51111171???12.21,所以y?12; 147143411177???11, 777当x?4时,y??即x?2,3,4时,与之相对应的y的值分别为13,12,11, 又P?y?13??P?x?2??41?, 164P?y?12??P?x?3??P?y?11??P?x?4??81?, 16241?, 164所以在所种葡萄中随机选取一株,它的收获量y的分布列为
111E?y??13??12??11??12.
424220.解:由题知抛物线C:x?4y的焦点为F?0,1?,设Ax1,y1,B?x2,y2?.
???x2?4y?x2?4kx?4a?0, 由??y?kx?a则??16k?a?0,且x1?x2?4k,x1x2??4a.
(1)若直线l过焦点F,则a?1,所以x1?x2?4k,x1x2??4. 由条件可知圆x??y?1??1的圆心为F?0,1?,半径为1,
22?2?又由抛物线定义可知AF?y1?1,BF?y2?1, 故可得AD?AF?1?y1,BE?BF?1?y2,
所以AD?BE?y1y2??kx1?1??kx2?1??k2x1x2?k?x1?x2??1??4k?4k?1?1.
22故AD?BE为定值1.
(2)假设存在点Q满足题意,设Q?0,y0?, 由x?4y?y?2112x,因此y'?x.
24若四边形APBQ为菱形,则AQ//BP,BQ//AP, 则kAQ?y1?y01y?y01?x2,kBQ?2?x1, x12x2211x1x2,y2?y0?x1x2,
22则y1?y0?则y1?y2,所以k?0,
此时直线AB的方程为y?kx?a?a,
???则抛物线在点A??2a,a?处的切线为y??所以A?2a,a,B2a,a. 联立①②,得P?0,?a?.
?ax?a,①
同理,抛物线在点B处的切线为y?ax?a,②
又线段AB的中点为R?0,a?,所以点Q?0,3a?.
即存在点Q?0,3a?,使得四边形APBQ为菱形,此时k?0.
221.解:(1)当a?2时,f?x??2?x?1??lnx?2x?4x?lnx?2.
2当x?1时,f?1??0,所以点P1,f?1?为P?1,0?, 又f'?x??4x?4???1,因此k?f'?1??1. x因此所求切线方程为y?0?1??x?1??y?x?1. (2)当a??1时,g?x??2lnx?x2?m, 则g'?x???2?x?1??x?1?2?2x?. xx因为x??,e?,所以当g'?x??0时,x?1, e且当
?1???1?x?1时,g'?x??0;当1?x?e时,g'?x??0; e故g?x?在x?1处取得极大值也即最大值g?1??m?1. 又g???m?2??1??e?1,g?e??m?2?e2, 2e11?1?g?e??g???m?2?e2?m?2?2?4?e2?2?0,
ee?e?则g?e??g??,所以g?x?在区间?,e?上的最小值为g?e?,
ee故g?x?在区间?,e?上有两个零点的条件是 e?1????1????1????g?1??m?1?01??1?m?2?, ??1?12e?g?e??m?2?e2?0???所以实数m的取值范围是?1,2???1?. 2?e?
相关推荐: