第一范文网 - 专业文章范例文档资料分享平台

半导体物理学讲义

来源:用户分享 时间:2025/6/1 2:50:45 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

Mine论坛友情提供:http://www.1398.zj.com欢迎访问交流半导体物理经验 2. 漂移速度和迁移率,电导率和迁移率。

1、欧姆定律

在半导体内部,常遇到电流分布不均匀的情况,熟知的欧姆定律

VI?R (4-1)

不能说明半导体内部电流的分布情况。利用电流密度J=△I/△S,推导出欧姆定律的微分形式

?J??E (4-2)

式中 σ=1/ρ为半导体电导率。 2、漂移速度和迁移率 载流子在电场力作用下的运动称为漂移运动,其定向运动的速度称为漂移速度。因为带电粒子的定向运动形成电流,所以,对电子而言,电流密度应为 J?n(?q)vd (4-3) ?式中 vd是电子的平均漂移速度。 对掺杂浓度一定的半导体,当外加电场恒定时,平均漂移速度应不变,相应的电流密度也恒定;电场增加,电流密度和平均漂移速度也相应增大。即平均漂移速度与电场强度成正比例 (4-4) ? 迁移率,表征单位场强下电子平均飘移速度,单位为m2/V·s或 cm2/V·s,迁移率一般取正值 vd??E??vd??E?? (4-5) 由此得到电导率和迁移率的关系 在实际半导体中,σ=nqμn+pqμp. n型半导体, n>>p, σ=nqμn; p型半导体, p>>n,, σ= pqμp; ??nq? (4-6) 本征型半导体, n=p=ni,σ= niq(μn+μp) 4.2 载流子的散射 本节要点 几种主要的散射机构及其决定散射几率的因素; 1、散射的概念 在电场力作用下的载流子一方面子遭受散射,使载流子速度的方向和大小不断改变,另一方面,载流子受电场力作用,沿电场方向(空穴)或反电场方向(电子)定向运动。二者作用的结果是载流子以一定的平均漂移速度做定向运动。 2、主要的散射机构

半导体的主要散射机构是电离杂质散射和晶格振动散射。 电离杂质散射

电离杂质周围存在库仑场,运动到其附件的载流子受到库仑场作用,速度发生改变,此为电离杂质散射。电离杂质越多,载流子受到散射的几率越大,温度越高,载流子更易掠过电离杂质,所以电离杂质散射几率

Pi?NiT?3/2 (4-7)

晶格振动散射

Mine论坛友情提供:http://www.1398.zj.com欢迎访问交流半导体物理经验 晶格中原子都在各自平衡位置附近做微小振动,形成格波。频率高的格波称为光学波,频率低的为声学波。格波的能量量子为声子。长纵声学波原子疏密的变化形成附近势场引起散射,长纵光学波形成极性光学波散射和光学波形变势散射。格振动散射主要是以长纵光学波和长纵声学波为主。

晶体中的电子与声子作用,即散射,遵循动量和能量守恒

hk?hk??hq (4-8)

?'??E'?E??h?a (4-9)

hq,h?a分别表示声子的准动量和能量。长声学波声子频率低,发生弹性散射,而长光?学波散射为非弹性散射。 长纵声学波散射几率 Ps?T3/2 (4-10) 长纵光学波散射几率 ?????h?l?3/2?11?Ps?(k0T)1/2??h?l???h?l??exp???1?f?????k0T??k0T????? (4-11) ?? 其他因素引起的散射有(1)等同的能谷间散射(2)中性杂质散射(3)位错散射 (4)合金散射(5)载流子间的散射(强简并时显著) 4.3 迁移率与杂质浓度和温度的关系 本节要点 1. 平均自由时间和散射几率的关系; 2. 电导率、迁移率与平均自由时间的关系; 3. 迁移率与杂质浓度和温度的关系 1. 平均自由时间和散射几率的关系 载流子在电场中作漂移运动时,只有在连续两次散射之间的时间称为自由时间,取极多次而求平均值,则称之为载流子的平均自由时间,常用τ表示。平均自由时间数值上等于散射几率的倒数即 τ=1/P 2. 电导率、迁移率与平均自由时间的关系 在不考虑速度的统计分布时,迁移率和平均自由时间τ的关系为: μn=qτn/mn (4-12) μp电导率: n型 σn=nqμn=nq2*=qτp*/mp (4-13) *τn/ mn2 +p q

2 P型 σp= pqμp=p q*τp/ mp2 本征型 =n q3. 迁移率与杂质浓度和温度的关系

对不同散射机构,迁移率与温度的关系为: 电离杂质散射: 声学波散射:

σi= nqμn+pqμp*τn/ mnτp*/ mp

?13/2μi∝τi∝NiT

(4-14)

-3/2μs∝τs∝T (4-15)

光学波散射: μo∝τo∝[EXP(hvl/kT)-1] (4-16)

Mine论坛友情提供:http://www.1398.zj.com欢迎访问交流半导体物理经验 由于

P=P?+P??+P???

对Si,Ge半导体,主要的散射机构是声学波散射和电离杂质散射,迁移率:

? μ

对高纯样品或杂质浓度较低的样品,晶格散射其主要作用,μ随温度增加而降低。 杂质浓度很高时,在低温范围,杂质散射起主导作用,μ随温度升高而缓慢增加,在温度较高时,将以晶格散射为主,μ随温度升高而降低。 μ与掺杂浓度的关系:当杂质浓度增大时,μ下降;若T 不变,Ni越大,μ越小。 特别指出,对补偿型材料,载流子浓度决定于两种杂质浓度之差,而迁移率决定 于电离杂质总浓度,若杂质全电离,则迁移率由两种杂质浓度之和决定。 q1m*AT3/2?BNi/T3/2

4.4 电阻率及其与杂质浓度和温度的关系 本节要点 1. 电阻率与杂质浓度的关系; 2. 电阻率与温度的关系。 1.电阻率与杂质浓度的关系; 为ρ=1/σ=1/(nqμn+pqμp),故电阻率决定于载流子浓度和迁移率,因而随杂质 浓度和温度而异,在室温下,轻掺杂的半导体的电阻率与杂质浓度成简单反比关系,对数坐标上近似为直线;而当杂质浓度增加时,电阻率与杂质浓度在在对数坐标上将严重偏离直线,这是由于(1)杂质在室温下不能全电离;(2)迁移率随杂质浓度增加而显著下降。 2.电阻率与温度的关系。 电阻率随温度的变化也很灵敏。低温下,电离杂质散射起主导作用,ρ大致随温度 高而下降;温度升高(包括室温),晶格振动散射上升为主要矛盾,ρ随T的上升而 升;到高温时,本征激发很快增加,成为矛盾主要方面,ρ随T的上升而迅速下降。 4.5 玻尔兹曼方程 电导率统计理论 半导体在外加电场下或存在温度梯度时,电子分布函数就要发生改变,非平衡态时,电子的分布函数满足 ???f??f???v??rf?k??kf????t??t?s (4-17) 其中 第一、二项是由漂移引起的变化,第三项是散射引起的变化。 稳态时,分布函数不随时间而变,玻尔兹曼方程为 ????f????v??rf?k??kf ??t?s ?如果没有温度梯度,f不随r变化,则玻尔兹曼方程: (4-18) ???f????k??kf ??t?s 在驰豫时间近似下的稳态玻尔兹曼方程为:

?f-f0k??kf?-? (4-19)

它表示撤销外场,由于散射作用,可以使分布函数逐渐恢复平衡值。从非平衡态逐渐恢复到平衡态的过程称为驰豫过程,?为驰豫时间。

4.6强电场下的效应 热载流子

本节要点

Mine论坛友情提供:http://www.1398.zj.com欢迎访问交流半导体物理经验 1. 热载流子的概念; 2. 迁移率与温度关系。

在强电场作用下欧姆定律发生偏离,迁移率随电场增加而下降,速度随电场增加的速率开始减慢,最后达到饱和漂移速度。 在强电场下,载流子获得的能量比其传给晶格的更多,载流子平均能量比热平衡状态时大,因而载流子与晶格系统不再处于热平衡状态,人们便引进载流子有效温度Te来描述与与晶格系统不处于热平衡状态的载流子,称之为热载流子。从而欧姆定律偏移现象可用热载流子与晶格散射来加以解释。 强电场下, 4qln*32?mnkT (4-20) μ=当电场不是很强时,载流子主要是和声学波散射,迁移率有所降低。当电场进一步加强,载流子能量高到可以和光学波声子能量相比时,散射时可以发射光学波声子,于是载流子获得的能量大部分又消失,因而平均漂移速度可以达到饱和 4.7多能谷散射 耿氏效应 本节要点 应用谷间散射解释负微分电导 由于GaAs材料导带具有双能谷结构,其能带机构如图4-19所示。电子获得能量从能谷1转移到能谷2,发生谷间散射有效质量大大增加,迁移率大大降低,平均漂移速度减小。 电导率下降,产生负阻效应,如图4-22所示。 引入平均迁移率 ?? 平均漂移速度 ?n1?1?n2?2n1?n2 (4-21) n1?1?n2?2?vd??E?En?n12 (4-22) ??微分电导=dvdJ?nqd?0,速度随电场增加而减小dEdE?.

习题选:

1、对于中等掺杂半导体,为何前者的迁移率随温度的变化趋势不同?试加以定性分析。

解:Si的电阻率与温度的变化关系可以分为三个阶段:

(1) 温度很低时,电阻率随温度升高而降低。因为这时本征激发极弱,可以忽略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。

搜索更多关于: 半导体物理学讲义 的文档
半导体物理学讲义.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c5qmvi987nr3gyk618441_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top