→→→∴BD=AD-AB, →
DC=AC-AD,
→→→→
∴AD-AB=2(AC-AD), →→→∴3AD=2AC+AB,
→2→2→2→→∴9AD=4AC+AB+4AC·AB. 27→
又|AD|=,
3
→2→→
代入化简得:|AC|-2|AC|-3=0,解得|AC|=3或-1(舍去).]
13.(2016·江苏高考)如图7-11,在△ABC中,D是BC的中点,E,F是AD上的两个
→→
→→→→→→
三等分点,BA·CA=4,BF·CF=-1,则BE·CE的值是________.
图7-11
7→→→→→→ [由题意,得BF·CF=(BD+DF)·(CD+DF) 8
→→→→→2→2=(BD+DF)·(-BD+DF)=DF-BD →2→2
=|DF|-|BD|=-1,① →
BA·CA=(BD+DA)·(CD+DA)
→→→→=(BD+3DF)·(-BD+3DF) →2→2=9DF-BD
→2→2
=9|DF|-|BD|=4.② →25→213
由①②得|DF|=,|BD|=. 88→→→→→→
∴BE·CE=(BD+DE)·(CD+DE) →→→→→2→2=(BD+2DF)·(-BD+2DF)=4DF-BD 5137→2→2
=4|DF|-|BD|=4×-=.] 888
→→
14.在△ABC中,已知AB=2,BC=3,∠ABC=60°,BD⊥AC,D为垂足,则BD·BC的
→→→→→
值为________.
5
2712
[由余弦定理AC=4+9-2×2×3×=7, 72
11
则AC=7,由S△ABC=×AC×BD=AB·BC·sin∠ABC,得
2211333
×7×BD=×2×3×,则BD=, 2227
→→→→→→2→→→2?33?227从而BD·BC=BD·(BD+DC)=BD+BD·DC=BD=??=.]
?7?7
→→→
15.在△ABC中,D为BC边的中点,AD=1,点P在线段AD上,则PA·(PB+PC)的最小值为________.
→??|→1→→→→→→→PA|+|PD|?2=-- [依题意得PA·(PB+PC)=2PA·PD=-2|PA|·|PD|≥-2?
22??→2
|AD|111→→→→→
=-,当且仅当|PA|=|PD|=时取等号,因此PA·(PB+PC)的最小值是-.] 2222
kπkπ??kπ
?16.(2015·江苏高考)设向量ak=?cos6,sin6+cos6??(k=0,1,2,…,12),则
(ak·ak+1)的值为______. 93 [因为ak=?cos
?
?
kπ
6
,2sin?
?kπ+π??,
4??6???
k+1ππ??k+1π??+??, ,2sin?ak+1=?cos
64??6??
所以ak·ak+1=cos2sin?
kπ
6
cos
k+1π
6
+
?kπ+π?·sin?k+1π+π?
???4?64??6?
12k+1π1ππ
=cos+cos+cos- 26266cos?
?2k+1π+π?
62???
2k+1π1
+cos62
2k+1π33
+. 64
(ak·ak+1)=0+0+93=93.]
=sin
由正弦函数的周期性,得
6
相关推荐: