∴点A、C分别是B′C′和A′B′的中点。 课堂小结:(师生合作总结)
目前,关于平行四边形的知识中,由平行四边形,我们可以得到哪些隐含的条件?(关于边和角的关系)
(跟踪练习)
1、在平行四边形ABCD中,AC交BD于O,则AO=OB=OC=OD。( ) 2、平行四边形两条对角线的交点到一组对边的距离相等。( )
3、平行四边形的两组对边分别 。 (创新练习)
平行四边形的对角线和它的边,可以组成( )对全等三角形。 (A)2 (B)3 (C)4 (D)6 (达标练习)
1、已知O是平行四边形ABCD的对角线的交点,AC=24mm,BD=38mm,AD=28mm,求三角形OBC的周长。
2、如图,平行四边形ABCD中,AC交BD于O,AE⊥BD于E,∠EAD=60°,AE=2cm,AC+BD=14cm, 求三角形BOC的周长。
3、已知:如图,平行四边形ABCD的一边AB=25cm,对角线AC、BD相交于点O,三角形AOB的周长比三角形BOC的周长少10cm,求平行四边形ABCD的周长。
(综合应用练习)
1、平行四边形的一条对角线与边垂直,且此对角线为另一边的一半,则此平行四边形两邻角的度数之比为( )
(A)1∶5 (B)1∶4 (C)1∶3 (D)1∶2
平行四边形的性质及判定(复习课)
教学目的:
1、深入了解平行四边形的不稳定性; 2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离) 3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;
4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。 教学重点:平行四边形的性质和判定。 教学难点:性质、判定定理的运用。 教学程序:
一、复习创情导入
平行四边形的性质: 边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。 平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1) 二、授新
1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法: 2、自学质疑:自学课本P79-82页,并提出疑难问题。
3、分组讨论:讨论自学中不能解决的问题及学生提出问题。 4、反馈归纳:根据预习和讨论的效果,进行点拨指导。 5、尝试练习:完成习题,解答疑难。 6、深化创新:平行四边形的性质: 边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。 平行四边形的判定: 边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
7、推荐作业
1、熟记“归纳整理的内容”;
2、完成《练习卷》; 3、预习:(1)矩形的定义?
(2)矩形的性质定理1、2及其推论的内容是什么? (3)怎样证明?
(4)例1的解答过程中,运用哪些性质?
思考题
1、平行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证;
2、如何证明性质定理3的逆命题? 3、有几种方法可以证明?
4、例2的证明中,运用了哪些性质及判定?是否有其他方法? 5、例3的证明中,运用了哪些性质及判定?是否有其他方法? 跟踪练习
1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )
2、在四边形ABCD中,AC交BD 于点O,若OC= 且 ,则四边形ABCD是平行四边形。
3、下列条件中,能够判断一个四边形是平行四边形的是( )
(A)一组对角相等; (B)对角线相等; (C)两条邻边相等; (D)对角线互相平分。
创新练习
已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法) 达标练习
1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。
2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。 综合应用练习
1、下列条件中,能做出平行四边形的是( )
(A)两边分别是4和5,一对角线为10; (B)一边为4,两条对角线分别为2和5;
(C)一角为600,过此角的对角线为3,一边为4;
(D)两条对角线分别为3和5,他们所夹的锐角为450。
推荐作业
1、熟记“判定定理3”; 2、完成《练习卷》;
3、预习: (1)“平行四边形的判定定理4”的内容 是什么? (2)怎样证明?还有没有其它证明方法? (3)例4、例5还有哪些证明方法?
平行四边形的判定(二)
一、教学目的和要求
使学生熟练掌握平行四边形判定的五种方法,并通过定理,习题的证明提高学生的逻辑思维能力;进一步掌握平行四边形性质与判定之间的区别与联系。 二、教学重点和难点
重点:掌握平行四边形的判定定理; 难点:灵活恰当地运用判定定理。 三、教学过程
(一)复习、引入 提问:
1. 平行四边形有什么性质?
2. 我们学习了哪些平行四边形的判定定理?
我们学习了利用“边”的条件来判定一个四边形是平行四边形,它是平行四边形边的性质定理的逆定理。那么平行四边形的对角及对角线的性质定理的逆命题是否成立呢? (二)新课
平行四边形的判定定理3:两组对角分别相等的四边形是平行四边形。 已知:如图1,四边形ABCD中?A??C,?B??D。 求证:四边形ABCD是平行四边形。 ADBC 图1 分析:四边形的内角和是360?,又知道对角相等,容易由同旁内角互补来证明两组对边分别平行。 证明由学生完成。
平行四边形的判定定理4:对角线互相平分的四边形是平行四边形。 已知:如图2,四边形ABCD中,对角线AC、BD 交于O点,且AO?OC,
BO?OD。
相关推荐: