燕 山 大 学 课 程 设 计 说 明 书
廓分布也极不均匀,故圆角的轮廓设计十分重要。
曲轴圆角半径r应足够大,根据表3-1, r/D1=0.03~0.05=2.1~4.0mm,圆角半径过小会使应力集中严重。为了增大曲轴圆角半径,且不缩短轴颈有效工作长度,可采用沉割圆角,设计沉割圆角时应该保证曲柄臂有足够厚度。曲轴圆角也可由半径不同的二圆弧和三圆弧组成。当各段圆弧半径选择适当时可提高曲轴疲劳强度,增加轴颈有效承载长度。
本次设计遵循以上原则,选取圆角半径 r=4mm。
3.6曲轴平衡块
曲轴平衡块的作用是平衡连杆大头,连杆轴颈和曲柄等产生的离心惯性力及其
力矩,有时也可以平衡往复惯性力及其力矩,以使发动机运转平稳,并可以减速
小主轴承的负荷。随着柴油机转速的提高,多数离心惯性力和离心惯性力矩已自行平衡的曲轴也配置平衡块,这主要是为了减轻主轴承的最大负荷,保证轴承有良好的润滑条件,减小曲轴和曲轴箱所受的离心惯性力矩。但曲轴配置平衡块后,重量增加,制造工艺复杂,曲轴系统扭转振动自振频率降低。因此,应根据转速,曲轴结构,曲柄排列,轴承负荷以及对平衡的要求等因素综合考虑是否配置平衡块。一般低速柴油机不需要配置平衡块,高度柴油机则需要配置平衡块。平衡方案的选择,平衡块重量的计算与布置,应该仔细考虑。
平衡块的重心应尽量远离曲轴中心线,以提高平衡效果。但平衡块一般不超过曲轴旋转所扫过的范围。平衡块厚度一般与曲柄臂相同。
四缸以上的直列发动机,虽从整体来说,其惯性力及其力矩是平衡的,但曲轴局部却受弯矩作用,如图3所示。图中惯性力F1=F2=F3=F4,M1-2=M3-4,所以整体上曲轴受力和力矩是平衡的。但从局部上看,1、2缸曲轴和3、4缸曲轴分别受弯矩M1-2 和M3-4 的作用,两个力矩给曲轴造成了弯曲负荷,会造成曲轴弯曲并加重轴承的负荷。为了减轻主轴承负荷、改善其工作条件,一般都在曲柄的相反方向上设置平衡重,分别在曲柄的背面设置平衡重使其产生的力矩与上述惯性力矩M1-2、M3-4相平衡(图4)。 、
共 18页 第9页
燕 山 大 学 课 程 设 计 说 明 书
图3 无平衡重曲轴的相平衡
图4 加平衡重曲轴相平衡
共 18页 第10页
燕 山 大 学 课 程 设 计 说 明 书
3.7曲轴的端部结构
曲轴两端分别为自由端和输出端。大多数柴油机的机油泵,水泵等辅助装置的驱动齿轮以及曲轴的扭转减振器均安装在自由端。飞轮装于输出端,柴油机产生的功率经输出端输出,但在某些工程机械或农用柴油机上,曲轴自由端也可输出部分乃至全部功率。
驱动配气机构和喷油泵的曲轴正时齿轮布置于自由端或输出端。当曲轴正时齿轮布置在输出端时,可将正时齿轮直接制造在曲轴上。
曲轴输出端一般借法兰通过定位销和螺栓来安装飞轮。为提高曲轴的扭转刚度,最后一道主轴承至曲轴法兰的轴段应尽量短粗,甚至其直径和曲轴法兰相同,这样也便于套装油封。
曲轴法兰大小应根据主轴承直径及油封装置来决定。飞轮紧固螺栓分布的圆周直径,最好使螺栓孔位于主轴颈外,并能让开主轴颈到法兰过度圆角。
曲轴三维图如图5所示。
图5 曲轴三维图
共 18页 第11页
燕 山 大 学 课 程 设 计 说 明 书
曲轴零件图如图6
图6 曲轴零件图
第四章 飞轮的设计与计算
4.1飞轮的作用
飞轮是一个转动惯量很大的圆盘,其主要功用是将在作功行程中输入于曲轴的功能的一部分贮存起来,用以在其他行程中克服阻力,带动曲柄连杆机构越过上、下止点。保证曲轴的旋转角速度和输出扭矩尽可能均匀,并使发动机有可能克服短时间的超载荷,此外,飞轮又往往用作摩擦式离合器的驱动件。
由于曲轴所发出的扭矩是个周期变化的量,当它大于有效阻力矩时,曲轴就加速,反之就减速,造成曲轴转速的波动,减小这种波动的措施有两种:一是增加内燃机的气缸数,另一措施是在曲轴上加装飞轮。在本次设计中,任务给定是四缸,所以我们在曲轴上加装了飞轮。
对任何往复式内燃机,其输出扭矩即使在稳定工况下也是不断周期性变化的。通常用扭短工 不均匀系数?来判断发动机合成扭矩的均匀程度。但发动机所带动的耸动装置的有效阻力矩一般是定值。因此,当曲拐在某一位置时,发动机的输出扭矩有可能大于或小于由其所带动的阻力矩。当发动机的
共 18页 第12页
相关推荐: