x2y2¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ??1£® ¡¡¡¡¡¡4·Ö
42£¨¢ò£©ÒÔMNΪֱ¾¶µÄÔ²¹ý¶¨µãF(?2,0)£®¡¡¡¡¡¡5·Ö
22x0y022??1£¬¼´x0Ö¤Ã÷ÈçÏ£ºÉèP(x0,y0)£¬ÔòQ(?x0,?y0)£¬ÇÒ?2y0?4£¬ 42¡ßA(?2,0)£¬¡àÖ±ÏßPA·½³ÌΪ£ºy?y02y0(x?2)£¬¡àM(0,)¡¡¡¡¡6·Ö
x0?2x0?2Ö±ÏßQA·½³ÌΪ£ºy?y02y0(x?2)£¬¡àN(0,)£¬ ¡¡¡¡¡¡7·Ö
x0?2x0?22y02y0)(y?)?0¡¡¡¡¡¡10·Ö
x0?2x0?2ÒÔMNΪֱ¾¶µÄԲΪ(x?0)(x?0)?(y?¡¾»òͨ¹ýÇóµÃÔ²ÐÄO?(0,2x0y04y0)r?||µÃµ½Ô²µÄ·½³Ì¡¿ £¬22x0?4x0?44x0y04y02y?2?0£¬ ¼´x?y?2x0?4x0?422¡ßx02222£¬¡àx?y??4??2y02x0y?2?0£¬¡¡¡¡¡¡12·Ö y0Áî
y?0£¬Ôòx2?2?0£¬½âµÃx??2. ¡àÒÔMNΪֱ¾¶µÄÔ²¹ý¶¨µãF(?2,0)£® ¡¡¡¡14·Ö
[ʯ¾°É½ÎÄ]
19£®£¨±¾Ð¡ÌâÂú·Ö14·Ö£©
2x2y2Èçͼ£¬ÒÑÖªÍÖÔ²C£º2?2?1(a?b?0)µÄÀëÐÄÂÊe?2baOBµÄÖе㣮
17
£¬¶ÌÖáµÄÓҶ˵ãΪB£¬ M£¨1£¬0£©ÎªÏß¶Îy O M B Q £® £® N x P £¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýµãMÈÎÒâ×÷Ò»ÌõÖ±ÏßÓëÍÖÔ²CÏཻÓÚÁ½µãP£¬Q ÊÔÎÊÔÚxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãN£¬Ê¹µÃ¡ÏPNM =¡ÏQNM£¿ Èô´æÔÚ£¬Çó³öµãNµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£® 19£®£¨±¾Ð¡Ìâ¹²14·Ö£© £¨¢ñ£©ÓÉÌâÒâÖª,b?2 ¡¡¡¡¡¡¡1·Ö
ÓÉe?2£¬a?22, ¡¡¡¡¡¡¡3·Ö 2x2y2??1£® ¡¡¡¡¡¡¡4·Ö ÍÖÔ²·½³ÌΪ48£¨¢ò£©Èô´æÔÚÂú×ãÌõ¼þµÄµãN£¬×ø±êΪ£¨t£¬0£©£¬ÆäÖÐtΪ³£Êý. ÓÉÌâÒâÖ±ÏßPQµÄбÂʲ»Îª0£¬ Ö±ÏßPQµÄ·½³Ì¿ÉÉèΪ£ºxÉèP(x1,y1),Q(x2,y2),
?my?1,(m?R) ¡¡¡¡¡¡¡5·Ö
?x?my?1,?22ÁªÁ¢?x2£¬ÏûÈ¥x µÃ£º(1?2m)y?4my?6?0, ¡¡¡¡¡¡¡7·Ö y2??1?8?4??16m2?24(1?2m2)?0ºã³ÉÁ¢£¬ËùÒÔy1+y2=ÓÉ?PNM?4m?6,yy=121?2m21?2m2 ¡¡8·Ö
??QNMÖª£ºkPN+kQN?0 ¡¡¡¡¡¡¡9·Ö
kPN?y1y,kQN?2£¬ x1?tx2?t£¬ ¡¡¡¡¡¡¡10·Ö
¼´
y1yy1y2?2?0£¬¼´??my1?1?tmy2?1?tx1?tx2?tÕ¹¿ªÕûÀíµÃ2my1y2?(1?t)(y1?y2)?0£¬
18
¼´
2m(?6)?4m(1?t)??0, ¡¡¡¡¡¡¡12·Ö 221?2m1?2m¼´m(t?4)?0£¬ÓÖm²»ºãΪ0£¬?t=4.¹ÊÂú×ãÌõ¼þµÄµãN´æÔÚ£¬×ø±êΪ(4,0)¡¡14·Ö [·¿É½Àí]
19.£¨±¾Ð¡Ìâ¹²14·Ö£©
¶¯µãP(x,y)µ½¶¨µãF(1,0)µÄ¾àÀëÓëËüµ½¶¨Ö±Ïßl:x?4µÄ¾àÀëÖ®±ÈΪ(¢ñ) Ç󶯵ãPµÄ¹ì¼£CµÄ·½³Ì£» £¨¢ò£©ÒÑÖª¶¨µã
12.
A(?2,0)£¬B(2,0)£¬¶¯µãQ(4,t)ÔÚÖ±ÏßlÉÏ£¬×÷Ö±ÏßAQÓë¹ì¼£CµÄÁíÒ»¸ö½»µãΪM,
×÷Ö±ÏßBQÓë¹ì¼£CµÄÁíÒ»¸ö½»µãΪN£¬Ö¤Ã÷£ºM,N,FÈýµã¹²Ïß. 19£®£¨±¾Ð¡Ìâ¹²14·Ö£©
½â£º (¢ñ)ÓÉÌâÒâµÃ
(x?1)2?y21?£¬ ¡¡¡¡¡¡2·Ö
|x?4|2x2y2??1. »¯¼ò²¢ÕûÀí£¬µÃ43x2y2??1. ¡¡¡¡¡¡5·Ö ËùÒÔ¶¯µãP(x,y)µÄ¹ì¼£CµÄ·½³ÌΪÍÖÔ²43£¨¢ò£©µ±t?0ʱ£¬µãMÓëBÖØºÏ£¬µãNÓëAÖØºÏ£¬
M,N,FÈýµã¹²Ïß. ¡¡¡7·Ö
µ±t?0ʱ
tty=(x+2),QB:y=(x-2) 62¸ù¾ÝÌâÒ⣺QA:?x2y2??1??43ÓÉ? ?y?t?x?2??6?19
t22ÏûÔªµÃ£º3x+(x+2)-12=0
92ÕûÀíµÃ£º(t2+27)x2+4t2x+4t2-108=0
=-2,ÁíÒ»¸ùΪxM,¸ù¾ÝΤ´ï¶¨Àí£¬
¸Ã·½³ÌÓÐÒ»¸ùΪx4t2-10854-2t2-2xM=2,xM=2
t+27t+27?x2y2??1??43ÓÉ? ?y?t?x?2???2ÏûÔªµÃ£º3xÕûÀíµÃ£º(t22+t2(x-2)2-12=0
+3)x2-4t2x+4t2-12=0
¸Ã·½³ÌÓÐÒ»¸ùΪx=2,ÁíÒ»¸ùΪxN,¸ù¾ÝΤ´ï¶¨Àí£¬
4t2-122t2-62xN=2,xN=2
t+3t+354-2t22t2-6=2µ±xM=xNʱ£¬ÓÉ2
t+27t+3µÃ£ºtµ±xM2=9,xM=xN=1£¬M,N,FÈýµã¹²Ïߣ»
kMFt18tt-6t£¬yN=(xN-2)=2 1xNʱ£¬yM=(xM+2)=26t+272t+318t-6t22yNyM6tt+27t+3=6t£»===k==NFxM-154-2t29-t2xN-12t2-69-t2-1-122t+27t+3
kMF?KNF£¬M,N,FÈýµã¹²Ïß.
×ÛÉÏ£¬ÃüÌâºã³ÉÁ¢. ¡¡¡¡¡¡14·Ö
20
Ïà¹ØÍÆ¼ö£º