动点问题解析
题型方法归纳
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点
1、(2009年齐齐哈尔市)直线y??3x?6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,4y B 同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单 位长度,点P沿路线O→B→A运动. (1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间 的函数关系式; (3)当S?P O Q A x 48时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的5坐标.
解:1、A(8,0) B(0,6)
2
2、当0<t<3时,S=t
当3<t<8时,S=3/8(8-t)t
提示:第(2)问按点P到拐点B所有时间分段分类;
第(3)问是分类讨论:已知三定点O、P、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)
如图,AB是⊙O的直径,弦BC=2cm, ∠ABC=60o.
(1)求⊙O的直径;
(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;
(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0?t?2),连结EF,当t为何值时,△BEF为直角三角形.
C A A E O C F B
A O C F E B
O 图(1)
B D 图(2)
第 1 页 共 11 页 图(3)
注意:第(3)问按直角位置分类讨论
3、(2009重庆綦江)如图,已知抛物线y?a(x?1)2?33(a?0)经过点A(?2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC. (1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?
(3)若OC?OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长. 注意:发现并充分运用特殊角∠DAB=60°
当△OPQ面积最大时,四边形BCPQ的面积最小。 二、
特殊四边形边上动点
A O Q B x y D P M C 4、(2009年吉林省)如图所示,菱形ABCD的边长为6厘米,?B?60°.从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A?C?B的方向运动,点Q以2厘米/秒的速度沿
A?B?C?D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动,设P、Q运动的时间
为x秒时,△APQ与△ABC重叠部分的面积为y平方厘米(这里规定:点和线段是面积为O的三角形),....
C D 解答下列问题:
(1)点P、Q从出发到相遇所用时间是 秒;
P B A Q (2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时x的值是 秒;
(3)求y与x之间的函数关系式.
提示:第(3)问按点Q到拐点时间B、C所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。
5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(?3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S?0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t
y 的取值范围); y A (3)在(2)的H B 条件A H B 下,当 t为何值时,∠MPB与∠BCO互为余角,
M O 图(1)
C x 第 2 页 共 11 页 M O 图(2)
C x
相关推荐: