第一范文网 - 专业文章范例文档资料分享平台

胡运权运筹学教程答案

来源:用户分享 时间:2025/8/29 15:33:05 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

胡运权运筹学教程答案

【篇一:运筹学基础及应用第四版胡运权主编课后练习

答案】

txt>习题一 p46 1.1 (a)

2 = 3。 (b)

用亂解法找+到满足所打约柬条仲的公:it?范w,所以该问题无可行解。 1.2 (a)

约束方程组的系数矩阵 r

最优解 a. = (o,iao,7,o,o) (b)约束方程组的系数矩阵 f i 2 3 4、 4 =

l2 2 i 2,

最优解1 = (^,0,11,0^ v5 5 ) 1.3 (a) (1)图解法 ⑵单纯形法

首先在各约朿条件上添加松弛变铽,将问题转化为标准形式 max z = 10a-, +5a2 +0x3 +0a4

[3a-. +4 义2 + a3 = 9 si.

[5a-j + 2x2 + a4 = 8

则a,p4组成个猫《=令a = ;c2 = 0 得-站可行解a_ = (0.0.9,8) ,山此列出初始单纯形表 cr2 0, 0 - minj 2a 新的单纯形农为 a, xo xa x 2

14 14 m ~t?

q.qco,表明已找到问题垴优解. _5_ _25

xi =~,a-3 =0, a4 (b)

(1)图解法 17

最优解即为严+= ai + x y 5 2x2 = 24

的解x=卩,2v最大值z: i i 2 2 / 单

纯形法 (2)

苘先在外约朿条件.h添加松弛变m,将问题转化为标准形式 max z = 2.v, + x2 + ox3 + 0.v4 + oa5 5a2 + = 15 6.y, + 2x2 + .v4 = 24

【篇二:运筹学(第五版) 习题答案】

章(39页)

1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。 (1)max z?x1?x2 5x1+10x2?50

x1+x2?1 x2?4 x1,x2?0

x1+3x2?3 x1+x2?2 x1,x2?0 (3)max z=2x1+2x2 x1-x2?-1 -0.5x1+x2?2

x1,x2?0 (4)max z=x1+x2 x1-x2?0 3x1-x2?-3 x1,x2?0

解: (1)(图略)有唯一可行解,max z=14 (2)(图略)有唯一可行解,min z=9/4 (3)(图略)无界解 (4)(图略)无可行解

1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。 (1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2 x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2 x1,x2,x3?0,x4无约束 (2)max s? n

m zk pk

zk???aikxik i?1k?1 ??x k?1 m ik

??1(i?1,...,n)

xik?0 (i=1…n; k=1,…,m)

(1)解:设z=-z?,x4=x5-x6, x5,x6?0 标准型:

max z?=3x1-4x2+2x3-5(x5-x6)+0x7+0x8-mx9-mx10 s. t . -4x1+x2-2x3+x5-x6+x10=2

x1+x2+3x3-x5+x6+x7=14 -2x1+3x2-x3+2x5-2x6-x8+x9=2 x1,x2,x3,x5,x6,x7,x8,x9,x10?0

(2)解:加入人工变量x1,x2,x3,…xn,得: max s=(1/pk)? i?1n ? k?1 m

?ikxik-mx1-mx2-…..-mxn s.t.

xi??xik?1 (i=1,2,3…,n) k?1m

xik?0, xi?0, (i=1,2,3…n; k=1,2….,m) m是任意正整数

1.3在下面的线性规划问题中找出满足约束条件的所有基解。指出哪些是基可行解,并代入目标函数,确定最优解。 (1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8 x1-2x2+6x3-7x4=-3 x1,x2,x3,x4?0

(2)max z=5x1-2x2+3x3-6x4

x1+2x2+3x3+4x4=7 2x1+x2+x3+2x4=3 x1x2x3x4?0 (1)解: 系数矩阵a是:

?23?1?4??1?26?7? ??令a=(p1,p2,p3,p4)

p1与p2线形无关,以(p1,p2)为基,x1,x2为基变量。 有

2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4 令非基变量x3,x4=0 解得:x1=1;x2=2

搜索更多关于: 胡运权运筹学教程答案 的文档
胡运权运筹学教程答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c5xwoy2oj5f9pugm7qnnb9acj39qpyw00eiw_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top