28¡¢µ±ÀûÓôóСΪn µÄÊý×é˳Ðò´æ´¢Ò»¸öջʱ£¬¼Ù¶¨ÓÃtop= =n ±íʾջ¿Õ£¬ÔòÏòÕâ¸öÕ»²åÈëÒ»¸öÔªËØÊ±£¬Ê×ÏÈÓ¦Ö´ÐУ¨ £©Óï¾äÐÞ¸ÄtopÖ¸Õë¡£ A top++;
B top--;
C top=0;
D top;
29¡¢ÉèÁ´Ê½Õ»ÖнáµãµÄ½á¹¹Îª£¨data, link£©,ÇÒtopÊÇÖ¸ÏòÕ»¶¥µÄÖ¸Õë¡£ÈôÏëÕª³ýÁ´Ê½Õ»µÄÕ»¶¥½áµã£¬²¢½«±»Õª³ý½áµãµÄÖµ±£´æµ½xÖУ¬ÔòÓ¦Ö´ÐÐÏÂÁУ¨ A £©²Ù×÷¡£
A x=top->data; top=top->link; C x=top; top=top->link; 30¡¢ÉèÑ»·¶ÓÁеĽṹÊÇ£º const int Maxsize=100; typedef int Data Type; typedef struct {
Data Type data[Maxsize]; Int front, rear; } Queue;
ÈôÓÐÒ»¸öQueueÀàÐ͵ĶÓÁÐQ£¬ÊÔÎÊÅж϶ÓÁÐÂúµÄÌõ¼þÓ¦ÊÇÏÂÁÐÄÄÒ»¸öÓï¾ä£¨ D £©
A Q.front= = Q.rear; B Q.front - Q.rear= = Maxsize; C Q.front + Q.rear= = Maxsize;
B top=top->link; x=top->data; D x=top->data;
D Q.front= = (Q.rear+1)% Maxsize;
31¡¢ÉèÓÐÒ»¸öµÝ¹éËã·¨ÈçÏ£º int fact (int n ) { if (n<=0) return 1; else return n*fact(n-1); }
ÏÂÃæÕýÈ·µÄÐðÊöÊÇ£¨ B £©
A ¼ÆËãfact(n) ÐèÒªÖ´ÐÐn´ÎµÝ¹é B fact(7)=5040 C ´ËµÝ¹éËã·¨×î¶àÖ»ÄܼÆËãµ½fact(8) D ÒÔÉϽáÂÛ¶¼²»¶Ô 32¡¢ÉèÓÐÒ»¸öµÝ¹éËã·¨ÈçÏ int x (int n) { if (n<=3) return 1;
else return x(n-2)+x(n-4)+1; }
ÊÔÎʼÆËã x(x(8))ʱÐèÒª¼ÆË㣨 D £©´Îxº¯Êý¡£ A 8 ´Î
B 9 ´Î C 16 ´Î D 1833¡¢ÉèÓйãÒå±íD(a,b,D),Æä³¤¶ÈΪ£¨ B £©£¬Éî¶ÈΪ£¨ A £© A ¡Þ
B 3
C 2
D 5
34¡¢¹ãÒå±íA(a),Ôò±íβΪ£¨ C £©
´Î
A a B (( ) ) C ¿Õ±í D £¨a£©
35¡¢ÏÂÁйãÒå±íÊÇÏßÐÔ±íµÄÓУ¨ C £© A E£¨a,(b,c)£© E(a,L( ) )
36¡¢µÝ¹é±í¡¢ÔÙÈë±í¡¢´¿±í¡¢ÏßÐÔ±íÖ®¼äµÄ¹ØÏµÎª£¨ C £©
A ÔÙÈë±í>µÝ¹é±í>´¿±í>ÏßÐÔ±í B µÝ¹é±í>ÏßÐÔ±í>ÔÙÈë±í>´¿±í C µÝ¹é±í>ÔÙÈë±í>´¿±í>ÏßÐÔ±í
DµÝ¹é±í>ÔÙÈë±í>ÏßÐÔ±í>´¿±í
B E(a,E)
C E (a,b)
D
37¡¢Ä³¶þ²æÊ÷µÄǰÐòºÍºóÐòÐòÁÐÕýºÃÏà·´£¬Ôò¸Ã¶þ²æÊ÷Ò»¶¨ÊÇ£¨ B £©µÄ¶þ²æÊ÷¡£
A ¿Õ»òÖ»ÓÐÒ»¸ö½áµã B ¸ß¶ÈµÈÓÚÆä½áµãÊý C ÈÎÒ»½áµãÎÞ×óº¢×Ó D ÈÎÒ»½áµãÎÞÓÒº¢×Ó
38¡¢¶ÔÓÚÈκÎÒ»¿Ã¶þ²æÊ÷T£¬Èç¹ûÆäÖն˽áµãÊýΪn0£¬¶ÈΪ2µÄ½áµãΪn2.,Ôò( A )
A n0= n2+1 B n2= n0+1 C n0= 2n2+1 D n2=2n0+1 39¡¢ ÓÉȨֵ·Ö±ðΪ11£¬8£¬6£¬2£¬5µÄÒ¶×Ó½áµãÉú³ÉÒ»¿Ã¹þ·òÂüÊ÷£¬ËüµÄ´øÈ¨Â·¾¶³¤¶ÈΪ£¨B £©
A 24 B 73 C 48 D 53
40¡¢ÒÑÖªÒ»¸ö˳Ðò´æ´¢µÄÏßÐÔ±í£¬Éèÿ¸ö½áµãÐèÕ¼m¸ö´æ´¢µ¥Ôª£¬ÈôµÚÒ»¸ö½áµãµÄµØÖ·Îªda1,ÔòµÚI ¸ö½áµãµÄµØÖ·Îª£¨ A £©¡£
A da1+(I-1)*m B da1+I*m C da1-I*m D da1+(I+1)*m 41¡¢34 ¾ßÓÐ35¸ö½áµãµÄÍêÈ«¶þ²æÊ÷µÄÉî¶ÈΪ( A ) A 5 B 6 C 7 D 8
42¡¢¶ÔÏßÐÔ±í½øÐÐÕÛ°ëËÑË÷ʱ£¬ÒªÇóÏßÐÔ±í±ØÐ루 C £©
A ÒÔÁ´½Ó·½Ê½´æ´¢ÇÒ½áµã°´¹Ø¼üÂëÓÐÐòÅÅÁÐ B ÒÔÊý×鷽ʽ´æ´¢ C ÒÔÊý×鷽ʽ´æ´¢ÇÒ½áµã°´¹Ø¼üÂëÓÐÐòÅÅÁÐ
DÒÔÁ´½Ó·½Ê½´æ´¢
43¡¢Ë³ÐòËÑË÷Ëã·¨ÊʺÏÓÚ´æ´¢½á¹¹Îª£¨ B £©µÄÏßÐÔ±í¡£ A É¢Áд洢 C ѹËõ´æ´¢
B ˳Ðò´æ´¢»òÁ´½Ó´æ´¢ D Ë÷Òý´æ´¢
44¡¢²ÉÓÃÕÛ°ëËÑË÷Ëã·¨ËÑË÷³¤¶ÈΪnµÄÓÐÐò±íʱ£¬ÔªËØµÄÆ½¾ùËÑË÷³¤¶ÈΪ£¨ C £© A O£¨n2£©
B O£¨n log2n£© C O£¨log2n£©
D O£¨n£©
45¡¢¶ÔÓÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÎÞÏòͼ£¬½øÐÐÍØÆËÅÅÐòʱ£¬×ܵÄʱ¼äΪ( A ) A n
B n+1
C n-1
D n+e
46¡¢ÅжÏÒ»¸öÓÐÏòͼÊÇ·ñ´æÔÚ»ØÂ·£¬³ýÁË¿ÉÒÔÀûÓÃÍØÆËÅÅÐò·½·¨Í⣬»¹¿ÉÒÔÀûÓã¨C £©¡£
A Ç󹨼ü·¾¶µÄ·½·¨ B Çó×î¶Ì·¾¶µÄDijkstra·½·¨ C Éî¶ÈÓÅÏȱéÀúËã·¨
D ¹ã¶ÈÓÅÏȱéÀúËã·¨
47¡¢ÔÚ10½×B-Ê÷Öиù½áµãËù°üº¬µÄ¹Ø¼üÂë¸öÊý×î¶àΪ£¨C £©£¬×îÉÙΪ( A ) A 1
B 2
C 9
D 10
48¡¢¶Ô°üº¬n ¸öÔªËØµÄÉ¢ÁÐ±í½øÐÐËÑË÷£¬Æ½¾ùËÑË÷³¤¶ÈΪ£¨ C £© A O£¨log2n£© B O£¨n£©
C ²»Ö±½ÓÒÀÀµÓÚn D ÉÏÊö¶¼²»¶Ô
Ïà¹ØÍÆ¼ö£º