2019届广东省华南师范大学附属中学高三上学期第二次月考
数学(理)试题
本试卷分选择题和非选择题两部分,共5页,满分150分,考试用时120分钟。 注意事项:
1.本试卷分第Ⅰ 卷(选择题)和第Ⅱ 卷(非选择题)两部分。答卷前,考生务必将自己的姓名和考生号、试室号、座位号等填写在答题卡上,并用2B铅笔在答题卡上的相应位置填涂考生号。
2.回答第Ⅰ 卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.回答第Ⅱ 卷时,用黑色钢笔或签字笔将答案写在答卷上。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项符合题目要求。 1. 已知集合
A.
B.
C.
,则( ) D. ,则
2. 记复数的共轭复数为,已知复数满足
A.
B.
C.
D.
( )
3. 下列函数中,既是偶函数又有零点的是( )
A. y?x B. y?tanx C. y?ex?e?x D. y?lnx 4. 设p:1 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5. 函数f?x??12sinx的部分图象可能是( ) 2x?1A. B. C. 6. 在等差数列 中, D. ,则( ) A. 8 B. 12 C. 16 D. 20 7. 已知 A. B. , C. , D. ,则 ( ) 8. 已知函数 中且 在一个周期内的图像如图所示,其 是图像与轴的交点, 分别是这段图像的最高点和最低点, ,则的值为( ) A. B. C. D. , , , 的最小值为 9. 如图,在平面四边形ABCD中, . 若点E为边CD上的动点,则 ( ) A. 10. 设 B. C. D. 是各项为正数的等比数列,是其公比, ,则下列结论错误的是( ) .. 是其前项的积,且, A. B. C. D. 与均为的最大值 11. 等边三角形边长为2,点是,则 的最小值是( ) 所在平面内一点,且满足,若 A. B. 12. 设函数 C. D. 是奇函数的导函数,当时,,则使得 成立的的取值范围是( ) A. B. C. D. 第Ⅱ卷 二、填空题(每小题5分,满分20分) 13. 已知向量 14. 已知sin??cos??,若 ,则 __________. 1?,??(,?),则tan?? . 5215. 由曲线y?16. 在 1 ,y2?x与直线x?2,y?0所围成图形的面积为________. x 的中点, 的面积的最大值为_______. ,点与点在直线 的异侧,且 中,为 ,则四边形 三、解答题:解答应写出文字说明、证明过程或演算步骤。 17.(本题满分12分)已知等差数列?an?的前nn?N*项和为Sn,数列?bn?是等比数列, ??a1?3,b1?1,b2?S2?10,a5?2b2?a3. (1)求数列?an?和?bn?的通项公式; (2)若cn? 18.(本题满分12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,到统计表格如下: 2,设数列?cn?的前n项和为Tn,求Tn. Sny表示第x天参加抽奖活动的人数,得 x y 1 5 2 8 3 8 4 10 5 14 6 15 7 17 (1)经过进一步统计分析,发现最小二乘法求出 y与x具有线性相关关系.请根据上表提供的数据,用 ??a??bx?; y关于x的线性回归方程y (2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为得“二等奖”的概率为 1,获61.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,3求此二人所获购物券总金额的分布列及数学期望. ??参考公式:bi?1n?xiyi?nxyi?12?xi?nx2n77??a?y?bx,,?xiyi?364,?xi2?140. i?1i?1 19.(本题满分12分)如图,在梯形ABCD中,AB∥CD,AD?DC?CB?2, ?ABC?60?,平面ACEF?平面ABCD,四边形ACEF是菱形,?CAF?60?. (1)求证:BF?AE; (2)求二面角B?EF?D的平面角的余弦值. A D C B F E x2y21?3?,?20.(本题满分12分)已知椭圆E:2?2?1?a?b?0?的离心率为,且点P?1ab2?2?在椭圆E上. (1)求椭圆E的方程; (2)过点M,?11?任作一条直线l,l与椭圆E交于不同于P点的A,B两点,l与直线 m:3x?4y?12?0交于C点,记直线PA、PB、PC的斜率分别为k1、k2、k3.试 探究k1?k2与k3的关系,并证明你的结论.
相关推荐: